跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/15 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:譚振台
研究生(外文):Chen-Tai Tan
論文名稱:非掃描非干涉強度型三維光學表面形貌儀與顯微鏡之研究
論文名稱(外文):Non-Scanning Non-Interferometric Intensity-Type Three-Dimensional Optical Profilometers and Microscopes
指導教授:邱銘宏邱銘宏引用關係
指導教授(外文):Ming-Hung Chiu
學位類別:博士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:98
中文關鍵詞:形貌儀顯微鏡臨界角內反射率
外文關鍵詞:profilometermicroscopecritical angleinternal reflection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:580
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本系列之研究精髓是以測試光於投射於待測物後在光學系統上所誘發角度偏向並結合CCD光強影像分析來描繪出其三維表面形貌。因待測物的表面輪廓變化正比於平行四邊形二次內反射率,且反比於二次內反射率對外角間之斜率,最後我們得到s 偏光曲線反射率對外角的斜率的較為平緩,其角度靈敏度較小,但可量測之縱向高度範圍較大,所得之表面形貌變化反應較為緩和與真實。雖然p偏光曲線反射率對外角斜率較為陡峭,其角度靈敏度較高,但可量測之縱向高度範圍較小,所得之表面形貌變化反應較為強烈。由一個物鏡與一個透鏡所形成之共焦透鏡組合加入實驗架構讓行經透明待測物之光線不因待則物表面變化而導致入射CCD之光線發生發散或收斂之現象,最後造成量測不準的情形。而且本系列研究囊括穿透式與反射式架構,放大倍率可從十幾倍到一千多倍,並可視待測物大小調整倍率。其優點為非破壞性、非接觸性量測,無干涉,因此不需有繁複的相位解析,且組裝容易,易於操作又可作即時大面積之表面形貌量測。

The essence of study is based on the reflectivity-to-height transformation and using the CCD imaging technique to build up a new three-dimensional profilometer or microscope. According to the basic geometrical optics, the test ray angle on the test surface is proportional to the slope of the surface. The deviation angle from the optics axis is also proportional to the slope and inversely proportional to the magnification of optical system. We used the confocal configuration to build up the optical system and to magnify the image of the specimen. The output ray angles are sensed based on the critical angle method. Because of its high angular resolution, the intensity pattern is sensitive to the surface profile. Comparing with the intensity pattern of total-internal reflection, the reflectivity profiles are obtained. As mentioned above, we should use a CCD sensor to be located at the image plane and to record either the critical angle image or the TIR image in real time. Overlapping these two images is well. The reflectivity profile can be transformed into the surface profile immediately. From the Fresnel’s equations, although the sensitive of height in the p-polarization light in twice internal reflection is more than that of in the s-polarization light, the image quality of the s-polarization light is better and the dynamic range of height is larger. In this paper, a series of studies on the 3-D profilometer and microscope are presented. The optical configurations contain the reflection and transmission types and the magnification is increased from 10 to 1250 times, where the specimens including any kind of transparent and opaque objects are measurable. The 3-D profile plotting is like as taking a shot without scanning. The advantages of this method are non-destructive, non-contact, and non interferometric, so it does’nt need a complicated phase analysis. In addition, it has other merits, such as, easy assembly, easy operation, large area testing, and real time 3-D measurements.

摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
符號說明 xi
第一章 序論 1
1.1前言 1
1.2論文架構 5
1.3參考文獻 8
第二章 原理 9
2.1 s偏光與p偏光反射率原理: 9
2.1.1 s偏光反射率(電場振動方向垂直入射面) 9
2.1.2 p偏光反射率(電場振動方向平行入射面) 11
2.2稜鏡內反射率變化原理 14
2.2.1 全反射基本原理 14
2.2.2 三角稜鏡內一次反射之反射率變化原理 14
2.2.3平行四邊形稜鏡內二次反射之反射率變化原理 15
2.2.4二次偏光反射率對外角變化之模擬 16
2.2.5二次偏光反射率之斜率對外角變化之模擬 18
2.3 穿透式待測物量測原理 20
2.4 共焦成像系統原理 23
2.5 反射式待測物量測原理 25
2.6 稜鏡平行度校正原理 27
2.7 光阻隔器(Isolator)原理 31
2.8 擴束器(Beam Expander)原理 32
2.9 CCD原理 34
2.10 顯微物鏡(Microscope objective)原理 35
2.11參考文獻 37
第三章 角度偏向光學形貌儀 38
3.1前言. 38
3.2實驗方法與步驟 39
3.3結果與討論 40
3.3.1角度偏向光學形貌儀架構1 40
3.3.2角度偏向光學形貌儀架構2-草履蟲量測結果 43
3.3.3角度偏向光學形貌儀架構2-液晶玻璃基板彩色濾光片量測結果 45
3.4本章結論 46
3.4.1 角度偏向光學形貌儀架構1 46
3.4.2 角度偏向光學形貌儀架構2 46
3.5參考文獻 48
第四章 非掃描非干涉式三維奈米光學形貌儀 49
4.1前言 49
4.2實驗方法與步驟 49
4.3結果與討論 51
4.4本章結論 55
4.5參考文獻 55
第五章高解析度反射式三維光學顯微鏡之研究 58
5.1前言 58
5.2實驗方法與步驟 59
5.3結果與討論 62
5.3.1 待測物為200 lines/mm之光柵 63
5.3.2 待測物為700MB容量之CD 66
5.4本章結論 69
5.5參考文獻 70
6.1文獻回顧與研究動機 71
6.2實驗架構與原理 73
6.2.1實驗架構 73
6.2.2 實驗原理 75
6.3結果與討論 76
6.3.1二維與三維初步量測結果 76
6.3.1.1 20 lines/mm光柵 76
6.3.1.1.1 20 lines/mm光柵CCD拍攝圖 76
6.3.1.1.2 共焦式三維光學形貌儀20 line/mm光柵2D量測結果 78
6.3.1.1.3 共焦式三維光學形貌儀20 lines/mm光柵3D量測結果 79
6.3.1.2 1000 lines/inch光柵 81
6.3.1.2.1 1000lines/inch光柵CCD拍攝圖 82
6.3.1.2.2 共焦式三維光學形貌儀1000lines/inch光柵2D量測結果 83
6.3.1.2.3 表面光學形貌儀Dektak-6M量測1000 lines/inch光柵3D量測結果 84
6.3.2系統分析 86
6.3.2.1靈敏度 86
6.3.2.2縱向解析度 86
6.3.2.3橫向解析度 87
6.3.2.4圖形濾波修正 87
6.3.3 或 斜率修正探討 87
6.3.4斜率修正後量測結果 89
6.4本章結論 91
6.5 參考文獻 92
第七章 總結論 93
附錄 94
英文論文大綱 95
簡歷 98



1.王義閔,高甫仁,魏良安, “共焦顯微鏡雜記”, 物理雙月刊(廿三卷二期), 329-335,2001年.
2.Hooke R: Micrographia. London: Royal Society of London, (1664)
3.H. Volkmann, “Ernst Abbe and His Work”, Applied Optics, Vol. 5, Issue 11, pp. 1720-1731 (1966)
4.A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection”,Z. Phys., 216, pp398-410, (1968)
5.Yuval Garini,Bart J Vermolen and Ian T Young, “From micro to nano:recent advances in high-resolution microscopy,” Current Opinion in Biotechnology 16,pp3-12,(2005)
6.Ming-Hung Chiu*, Bo-Yuan Shih, and Chih-Wen Lai, “Laser scanning angular deviation microscopy”, Applied Physics Letters, 90, 201111 (2007)
7.張瑞慶,賴炳宏,葉甄佩, “應用掃描探針顯微鏡技術製作奈米結構”,聖約翰學報 第二十四期(2007).
8.G.Binning, C. F. Quate, and Ch. Gerber, “Atomic Force Microscopy”, Physical Review Letters, 56, p930 (1986)
9.工業技術研究院,“台灣奈米科技”,全華圖書公司(2004)
10.羅聖全,“小奈米大世界”, http://www.materialsnet.com.tw/AD/ADImages/AAADDD/
MCLM100/download/equipment/EM/FE-SEM/FE-SEM005.pdf
11.Zworykin VK, Hillier J, Snyder RL: A scanning electron microscope. ASTM Bull 1 17,15-23 (1942)
12.M. Born and E. Wolf, “Principles of Optical.” Pergamon Press, New York(1999)
13.W. J. Smith, “Modern Optical Engineering.” McGraw Hill, NewYork(2000)
14.J. M., “Bennett Recent developments in surface roughness characterization,” Meas. Sci. Technol. 3, 1119 (1992).
15.D. J. Whitehouse, “Stylus contact method for surface metrology in the ascendancy,” Meas. Control. 31, 48 (1998).
16.C. Cheng, C. Liu, N. Zhang, R. Li, Z. Xu, and T. Jia, “Absolute measurement of roughness and lateral-correlation length of random surfaces by use of the simplified model of image-speckle contrast,” Appl. Opt. 41, 4148 (2002).
17.R.S. Lu, G.Y. Tian, D. Gledhill, and S. Ward, “Absolute measurement of roughness and lateral-correlation length of random surfaces by use of the simplified model of image-speckle contrast,” Appl. Opt. 45, 8839 (2006).
18.H.G. Rhee, Y. W. Lee, and I. W. Lee, “Roughness Measurement Performance Obtained with Optical Interferometry and Stylus Method,” J. Optical Society of Korea, 10, 48 (2006).
19.Y.L. Chen, Z.C. Jian, H.C. Hsieh, W.T. Wu, and D.C. Su, “Nano-roughness measurements with a modified Linnik microscope and the uses of full-field heterodyne interferometry, ”Opt. Eng. 47, 125601-1 (2008).
20.S. Wang, Y. Tian, C. J. Tay, and C. Quan, ” Development of a laser-scattering-based probe for on-line measurement of surface roughness ,” Appl. Opt. 42, 1318 (2003).
21.S. Wei and L. Li, ”Measurement of photoresist grating profiles based on multiwavelength scatterometry and artificial neural network,” Appl. Opt. 47, 2524 (2008).
22.G. Häusler, C. Richter, K.H. Leitz, and M.C. Knauer, ”Microdeflectometry-a novel tool to acquire three-dimensional microtopography with nanometer height resolution,” Opt. Lett. 33, 396 (2008).
23.D.K. Qing, I. Yamaguchi, T. Okamoto, and M. Yamamoto, ”Measurements of the thickness distribution of thin films with a slit-beam-profile reflectometer,” Opt. Lett. 25, 914 (2000).
24.S. Wang, C. J. Tay, C. Quan, and H. M. Shang, “Investigation of membrane deformation by a fringe projection method,” Appl. Opt. 41, 101 (2002).
25.S. Wang, C. Quan, C. J. Tay, I. Reading, and Z. Fang, ”Measurement of a fiber-end surface profile by use of phase-shifting laser interferometry,” Appl. Opt. 43, 49 (2004).
26. P. de Groot, “Measurement of transparent plates with wavelength-tuned phase-shifting interferometry,” Appl. Opt. 39, 2658 (2000).
27.M. Thakur, C. J. Tay, and C. Quan, “Surface profiling of a transparent object by use of phase-shifting Talbot interferometry,” Appl. Opt. 44, 2541 (2005).
28.J. F. Power and S. W. Fu, “Longitudinal Light Profile Microscopy: A New Method for Seeing Below the Surfaces of Thin-Film Materials,” Appl. Spectroscopy, 53, 1507 (1999).
29.M.H. Chiu, C.W. Lai, C.T. Tan, and C.F. Lai, “Transmission-type angle deviation microscopy,” Appl. Opt. 47, 5442 (2008).
30.K. Carlsson, P. E. Danielsson, R. Lenz, A. Liljeborg, L. Majlöf, and N. Åslund, “Three-dimensional microscopy using a confocal laser scanning microscope,” Opt. Lett. 10, 53-55 (1985).
31.D. Lin, Z. Liu, R. Zhang, J. Yan, C. Yin, and Y. Xu, “Step-height measurement by means of a dual-frequency interferometric confocal microscope,” Appl. Opt. 43, 1472-1479 (2004).
32.E. J. Botcherby, M. J. Booth, R. Juškaitis, and T. Wilson, “Real-time slit scanning microscopy in the meridional plane,” Opt. Lett. 34, 1504-1506 (2009).
33.E. Vasilyeva and A. Taflove, “Three-dimensional modeling of amplitude-object imaging in scanning near-field optical microscopy,” Opt. Lett. 23, 1155-1157 (1998).
34.Y. Fainman, E. Lenz, and J. Shamir, “Optical profilometer: a new method for high sensitivity and wide dynamic range,” Appl. Opt. 21, 3200-3208 (1982).
35.C. H. Lee, H. Y. Mong, and W. C. Lin, “Noninterferometric wide-field optical profilometry with nanometer depth resolution,” Opt. Lett. 27, 1773-1775 (2002).
36.G.. Li, P. C. Sun, P. C. Lin, and Y. Fainman, “Interference microscopy for three-dimensional imaging with wavelength-to-depth encoding,” Opt. Lett. 25, 1505-1507 (2000).
37.P. de Groot, “Stroboscopic white-light interference microscopy,” Appl. Opt. 45, 5840-5844 (2006).
38.J. S. Hartman, R. L. Gordon, and D. L. Lessor, “Quantitative surface topography determination by Nomarski reflection microscopy. 2: Microscope modification, calibration, and planar sample experiments,” Appl. Opt. 19, 2998-3009 (1980).
39.J. Krasinski, D. F. Heller, and O. Kafri, “Phase object microscopy using moiré deflectometry,” Appl. Opt. 24, 3032-3036 (1985).
40.P. A. J. de Korte and R. Lainé, “Assessment of surface roughness by x-ray scattering and differential interference contrast microscopy,” Appl. Opt. 18, 236-242 (1979).
41.G. Wiegand, K. R. Neumaier, and E. Sackmann, “Microinterferometry: three-dimensional reconstruction of surface microtopography for thin-film and wetting studies by reflection interference contrast microscopy (RICM),” Appl. Opt. 37, 6892-6905 (1998).
42.A. Resnick, “Differential interference contrast microscopy as a polarimetric instrument,” Appl. Opt. 41, 38-45 (2002).
43.J. C. Contreras-Naranjo, J. A. Silas, and V. M. Ugaz, “Reflection interference contrast microscopy of arbitrary convex surfaces,” Appl. Opt. 49, 3701-3712 (2010).
44.S. S. C. Chim and G. S. Kino, “Three-dimensional image realization in interference microscopy,” Appl. Opt. 31, 2550-2553 (1992).
45.K. Snow and R. Vandewarker, “An Application of Holography to Interference Microscopy,” Appl. Opt. 7, 549-554 (1968).
46.F. Charrière, A. Marian, T. Colomb, P. Marquet, and C. Depeursinge, “Amplitude point-spread function measurement of high-NA microscope objectives by digital holographic microscopy,” Opt. Lett. 32, 2456-2458 (2007).
47.R. Gauderon and P. B. Lukins, “Three-dimensional second-harmonic generation imaging with femtosecond laser pulses,” Opt. Lett. 23, 1209-1211 (1998).
48.T. Kohno, N. Ozawa, K. Miyamoto, and T, Musha, “High precision optical surface sensor” Appl. Opt. 27, 103-108 (1988).
49.P. S. Huang and J. Ni, “Angle Measurement based on the internal-reflection effect and the use of right–angle prisms” Appl. Opt. 34, 4976-4981 (1995).
50.Madhuri Thakur, Cho Jui Tay, and Chenggen Quan, “Surface profiling of a transparent object by use of phase-shifting Talbot interferometry”, Applied Optics, 44, 2541-2545, 2005.
51.Oleg V.Angelsky,Alexander P.Maksimyak, Peter P. Maksimyak, and Steen G. Hanson, “Optical correlation diagnostics of rough surfaces with large surface inhomogeneities”, Optics Express, 14, 7299-7311, 2006.
52.http://cslin.auto.fcu.edu.tw/plc/plcc/ex8.htm
53.Chen-Tai Tan, Yuan-Sheng Chan, Jhao-An Chen, Teh-Chao Liao, Ming-Hung Chiu, “Non-scanning, non-interferometric, three-dimensional optical prof ilometer with nanometer resolution”, Chinese Optics Letters, COL 9(10), 101202(2011).
54.Bennett J. M., Dancy J. H., “Stylus profiling instrument for measuring statistical properties of smooth optical surfaces”, Appl. Opt.,20,1785-1802(1981)
55.Song J. F., Vorburger T. V.. “Stylus profiling at high resolution and low force” Appl. Opt.,30,42-50(1991)
56.J. Garratt and M. Mills, “Measurement of the roughness of supersmooth surfaces using a stylus instrument”, Nanotechnology, 7, 13-20, 1996.
57.Stedman M., Lindsey K., “Limits of surface measurement by stylus instruments”, Proc SPIE,1009,56-61(1988)
58.Whitefield R. J., “Noncontact optical profilometer”, Appl. Opt.,14,2480-2485(1975)
59.Stedman M., “Limitis of surface measurement by optical probes”, Proc SPIE,1009,62-67(1975,)
60.David B.Williams & C. Barry Carter, “Transmission electron microscopy”, Plenum, 1996
61.M. H. Chiu, B. Y. Shih, and C. W. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett. 90, 021111 (2007).
62.M.H. Chiu, C.W. Lai, C.T. Tan, and C.F. Lai, “Transmission-type angle deviation microscopy,” Appl. Opt. 47, 5442 (2008).
63.Chen-Tai Tan, Yuan-Sheng Chan, Zhen-Chin Lin, and Ming-HungChiu*, “Angle-deviation optical profilometer”, Chinese Optics Letters, COL 9(1), pp. 011201-11203 (2011).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top