跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1fb:e713:2b67:6e79) 您好!臺灣時間:2024/12/12 16:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許家銘
研究生(外文):Chia -Ming Hsu
論文名稱:N型與P型氧化鋅之研製
論文名稱(外文):Study On N-type And P-type Zinc Oxide Thin Films
指導教授:雷伯薰
指導教授(外文):Po-Hsun Lei
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:74
中文關鍵詞:雙電漿有機金屬化學氣相沉積法氧化鋅摻氮氧化鋅摻鋁低溫聚苯醚碸有機發光二極體
外文關鍵詞:Al-doped ZnO (AZO)Dual-plasma-enhanced metal-organic chemical vapor deposition (DPEMOCVD)Organic light-emitting diodes (OLEDs)Polyestersulfone (PES)N-doped ZnO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:498
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文以雙電漿輔助有機金屬化學氣相沉積法(DPEMOCVD)成功備製氧化鋅摻鋁薄膜於PES基板上,氧化鋅摻鋁薄膜特性與沉積溫度和鋁含量有關。最佳溫度為185 ℃與最佳鋁含量為2.88%,在可見光範圍內平均穿透率為89%,最低阻值為6.36 x 10-4 Ωcm,在PES基板上備製氧化鋅摻鋁薄膜應用於OLED之陽極,在電壓10伏特下有最高亮度為2820 cd/m2、最高效率為11.6 cd/A、且有最窄的電致發光(EL)之半高寬, OLED元件之陽極是使用業界ITO玻璃與業界之鍍ITO在PEN基板及我們DPEMOCVD沉積於PES基板上的氧化鋅摻鋁薄膜相比較下,很明顯看出我們的PES基板上氧化鋅摻鋁薄膜備製OLED元件特性較佳。
以低溫下成長氧化鋅摻鋁薄膜於藍寶石基板上,在電漿功率350 W的條件下,藍寶石基板上之氧化鋅摻鋁薄膜在成長溫度在185 oC有較佳的電特性,電阻率為1.85×10-4 Ωcm,載子濃度為3.66×1021 cm-3,移動率為10.08 cm2/Vs,平均穿透率為88.5%,並應用於藍光二極體上當作透明導電層使用,跟銦錫氧化物作比較,氧化鋅摻鋁薄膜就可以跟銦錫氧化物應用在透明導電層中光電特性皆相同,在銦跟錫的礦產越來越稀少的情況下,氧化鋅摻鋁薄膜取代銦錫氧化物薄膜的日子不遠了。
另外本論文以低溫下成長氧化鋅摻氮薄膜,當成長溫度慢慢增加,基板提供足夠能量使氧化鋅摻氮薄膜成長。在電漿功率350 W的條件下,藍寶石基板上之氧化鋅薄膜在成長溫度在280 oC有較佳的電特性,電阻率為1.29 Ωcm,載子濃度為6.791?1018 cm-3,移動率為7.581cm2/Vs,P型氧化鋅;進一步以拉曼、二次離子質譜儀(SIMS)來量測,並以XRD量測來證明DPEMOCVD成長的晶格方向正確,在可見光波段下的穿透率大約87%。


This study proposes flexible organic light-emitting diodes (OLEDs) grown on polyestersulfone (PES) using Al-doped zinc oxide (AZO) as anode, which is fabricated by dual-plasma-enhanced chemical vapor deposition (DPEMOCVD) system. The experimental results including crystalline structure, optical and electrical characteristics indicate that the quality of AZO films grown on PES depends on the deposition temperature and Al content. The optimum deposition temperature and Al content for AZO film are 185 oC and 2.88 at %, respectively. Further increasing or decreasing the deposition temperature and Al content will degrade quality of AZO films. The optimum AZO film deposited on PES substrate was used as the anode for flexible OLED. It shows a similar performance as compared with OLEDs using commercial indium-tin-oxide (ITO) as anode on glass, and represents better characteristics than that of commercial ITO anode on flexible polyethylene naphathalate (PEN) substrate. This indicates that the DPEMOCVD-deposited AZO film on PES substrate can be the anode for flexible OLEDs.
The optimum substrate temperature for Al-doped ZnO thin film grown by DPEMOCVD system is 185 oC under the conditions of chamber pressure of 50 mtorr, DC and RF power of 1.8 Watt (W) and 350 W. The Al-doped ZnO grown on sapphire at 185 oC represents a strongest (002) peak intensity observed in X-ray diffraction (XRD), a highest transmittance of 88 %, and lowest resistivity of 1.857×10-4 Ωcm. Finally, we apply the Al-doped ZnO thin film to InGaN/GaN light-emitting diode as the transparent conductive layer (TCL). As compared to the InGaN/GaN LEDs with indium-tin-oxide (ITO) TCL, the InGaN/GaN LEDs with Al-doped ZnO thin film present the same optical and electrical characteristics, indicating that the Al-doped ZnO thin film grown by DPEMOCVD system can be a candidate for TCL in InGaN/GaN LEDs.
Addition, The N-doped ZnO thin flims grown on Sapphire at 280 oC represents a strongest (002) peak intensity observed in X-ray diffraction (XRD), a highest transmittance of 87 %, and resistivity of 1.29Ωcm, conductivity type of P,carrier concentration of 6.791?1018cm-3, mobility of 7.581cm2/Vs.


中文摘要 ………………………………………………… i
英文摘要 ………………………………………………… ii
致謝 …………………………………………………………… iv
目錄 …………………………………………………………… v
表目錄 …………………………………………………………… vii
圖目錄 …………………………………………………………… viii
第一章 …………………………………………………………… 1
1.1 前言……………………………………………………… 1
1.2 簡介……………………………………………………… 3
第二章 基礎理論與實驗流程…………………………………… 8
2.1 電漿理論………………………………………………… 8
2.2 DPEMOCVD系統…………………………………………… 11
2.3 實驗流程………………………………………………… 13
2.4 量測分析………………………………………………… 15
2.4.1 α-step 膜厚量測儀…………………………………… 15
2.4.2 霍爾量測原理與量測…………………………………… 16
2.4.3 X射線繞射儀(X-ray diffraction,XRD) …………… 16
2.4.4 紫外線-可見光-紅外線光譜儀(UV-Vis Spectrum) … 17
2.4.5 場發掃描式電子顯微鏡(FE-SEM)……………………… 17
2.4.6 原子力顯微鏡(Atomic Force Microscope, AFM)…… 18
2.4.7 拉曼光譜儀(micro-Raman Spectroscopy)…………… 18
2.4.8 二次離子質譜儀(Secondary Ion Mass Spectroscopy) 18
第三章 實驗結果與討論………………………………………… 19
3.1 氧化鋅摻鋁薄膜在塑膠基板上的結晶特性…………… 19
3.2 氧化鋅摻鋁薄膜在塑膠基板上的表面特性…………… 22
3.3 氧化鋅摻鋁薄膜在塑膠基板上的電特性……………… 24
3.4 氧化鋅摻鋁薄膜在塑膠基板上的光學特性…………… 26
3.5 氧化鋅摻鋁薄膜在塑膠基板上應用在有機發光二極體 上…………………………………………………………………… 30
3.6 電漿系統對成長於藍寶石基板上的氧化鋅摻鋁薄膜影響…………………………………………………………………… 35
3.7 氧化鋅摻鋁薄膜在藍寶石基板上的結晶特性………… 36
3.8 氧化鋅摻鋁薄膜在藍寶石基板上的光學性質………… 39
3.9 氧化鋅摻鋁薄膜在藍寶石基板上的電特性…………… 43
3.10 使用AZO、ITO製作InGaN/GaN LED透明接觸層(TCL)… 44
3.11 成長於藍寶石基板上的氧化鋅摻氮薄膜之電特性…… 47
3.12 氧化鋅摻氮薄膜在藍寶石基板上的結晶特性………… 50
3.13 氧化鋅摻氮薄膜在藍寶石基板上的光學性質………… 54
第四章 結論……………………………………………………… 59
參考文獻 ………………………………………………… 60
英文大綱 ………………………………………………… 69
簡歷 …………………………………………………………… 74


[1]H. Kim, J. S. Horwitz, W. H. Kim, S. B. Qadri, Z. H. Kafafi, “Anode material based on Zr-doped ZnO thin film for organic light-emitting diodes”, Appl. Phys. Lett., vol. 83 (2003) 3809-3831.
[2]L. Wang, J. S. Swensen, E. Polikarpov, D. W. Matson, C. C. Bonham, W. Bennett, D. J. Gaspar, A. B. Padmaperuma, “Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrate”, organic electron., vol. 11, (2010) 1555-1560.
[3]S. P. Jung, D. Ullery, C. H. Lin, H. P. Lee, J. H. Lim, D. K. Hwang, J. Y. Kim, E. J. Yang, S. J. Park, “ High-performance GaN-based light-emitting diode using high transparency Ni/Au/Al-doped ZnO ZnO composite contacts”, Appl. Phys. Lett., vol. 87 (2005) 181107.
[4]J. C. Wang, W. T. Weng, M. Y. Tsai, M. K. Lee, S. F. Horng, T. P. Perng, C. C. Kei, C. C. Yu, H. F. Meng, “Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer”, J. Mater. Chem., vol. 20 (2010) 862-866.
[5]H. K. Park, J. W. Kang, S. I. Na, D. Y. Kim, H. K. Kim,” Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics”, Sol. Energy Mater. Sol. Cells, vol. 93 (2009) 1994-2002.
[6]K. K. Song, J. H. Noh, T. H. Jun, H. Y. Kang, “Fully flexible solution-deposited ZnO thin film transistors”, Adv. Mater., vol. 22 (2010) 4308-4312.
[7]Z. W. Yang, S. H. Han, T. L. Yang, L. Ye, H. L. Ma, C. F. Cheng, “ITO films deposited on wafer-cooled flexible substrate by bias RF magnetron sputtering”, App. Surf. Sci., vol. 161 (2000) 279-285.
[8]P. H. Lei, S. H. Wang, F. S. Juang, Y. H. Tseng, and M. J. Chung,” Effect of SiO2/Si3N4 Dielectric Distributed Bragg Reflectors (DDBRs) for Alq3/NPB Thin-Film Resonant Cavity Organic Light Emitting Diodes” Opt. Comm., vol. 283 (2010) 1933-1937.
[9]T. Minami, T. Miyata, “Present status and future prospects
for development of non- or reduced-indium transparent conducting oxide thin films” Thin Solid Films, vol.517 (2008) 1474-1477.
[10]J. S. Kim, M. Granstrom, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, “Indium–tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance” J. Appl. Phys., vol. 84 (1998) 6859-6870
[11]E. Gautier, A. Lorin, J. M. Nunzi, A. Schalchli, J. J. Benattar, D. Vital, “Electrode interface effects on indium–tin–oxide polymer/metal light emitting diodes” Appl. Phys. Lett., vol. 69 (1996) 1071-1073.
[12]R. Y. Yang, M. H. Weng, C. T. Pan, C. M. Hsiung, and C. C. Huang, ”Low temperature deposited ZnO thin films on the flexible substrate by cathodic vacuum arc technology”, Appl. Surf. Sci., vol. 257 (2011) 7119-7122.
[13]A. I. Ievtushenko, V. A. Karpyna, V. I. Lazorenko, G. V. Lashkarev, V. D. Khranovskyy, V. A. Baturin, O. Y. Karpenko, M. M. Lunika, K. A. Avramenko, V. V. Strelchuk, and O. M. Kutsay, “ High quality ZnO films deposited by radio-frequency magnetron sputtering using layer by layer growth method”, Thin Solid Films, vol. 518 (2010) 4529-4532.
[14]J. J. Berry, D. S. Ginley, P. E. Burrows, “ Organic light emitting diodes using a Ga: ZnO node”Appl. Phys. Lett., vol. 92 (2008) 193304.
[15]Y. M. Kim, W. J. Lee, D. R. Jung, J. M. Kim, S. H. Nam, H. C. Kim, B. W. Park, “ Optical and electronic properties of post-annealing ZnO:Al thin films” Appl. Phys. Lett., vol. 96 (2010) 171902.
[16]L. M. Wong, S. Y. Chiam, J. Q. Huang, S. J. Wang, J. S. Pan, W. K. Chim, “ Role of oxygen for highly conducting and transparent gallium-doped zinc oxide electrode deposited at room temperature”, Appl. Phys. Lett., vol. 98 (2011) 022106.
[17]Y. S. Rim, H. J. Kim, K. H. Kim, “Characteristics of indium zinc oxide films deposited using the facing targets sputtering method for OLEDs applications”, Thin Solid Films, vol. 518 (2010) 6223-6227.
[18]A. Hongsingthong, I. A. Yunaz, S. Miyajima, and M. Konagai, “Preparation of ZnO thin films using MOCVD technique with D2O/H2OgasmixtureforuseasTCOinsilicon-basedthinfilmsolarcells“, Sol. Energy Mater. Sol. Cells, vol. 95 (2011) 171-174.
[19]T. T. Tan, H. S. Sim, S. P. Lau, H. Y. Yang, M. Tanemura, and J. Tanaka, “X-ray generation using carbon-nanofiber-based flexible field emitters”, Appl. Phys. Lett., vol. 88 (2006) 103105.
[20]K. H. Choi, H. J. Nam, J. A. Jeong, S. W. Cho, H. K. Kim, J. W. Kang, D. G. Kim, and W. J. Cho, Highly flexible and transparent InZnSnOx/Ag/InZnSnOx multilayer electrode for flexible organic light emitting diodes” Appl. Phys. Lett., vol. 92 (2008) 223302.
[21]J. A. Jeong, H. S. Shin, K. H. Choi, H. K. Kim, “Flexible Al-doped ZnO films grown on PET substrate using linear facing target sputtering for flexible OELDs”, J. Phys. D: Appl. Phys., vol. 43 (2010) 465403-465408.
[22]Y. Watanabe, K. Kudo, “Flexible organic static induction transistors using pentacene thin films” Appl. Phys. Lett., vol. 87 (2005) 223505.
[23]Z. W. Yang, S. H. Han, T. L. Yang, L. Ye, H. L. Ma, C. F. Cheng
“ITO films deposited on water-cooled flexible substrate by bias RF Magnetron Sputtering”, Appl. Surf. Sci., 161 (2000) 278-285.
[24]Y. G. Han, D. H. Kim, J. S. Cho, Y. W. Beag, S. K. Koh, V. S. Chernysh, “Effect of substrate treatment on the initial growth mode of indium-tin-oxide films”, J. Appl. Phys., vol.97 (2005) 029410.
[25]Y. C. Lin, M. Z. Chen, C. C. Kuo, W.T. Yen, “Electrical and haract properties of ZnO:Al film prepared on polyethersulfone substrate by RF magnetron sputtering:, Colloid Surf. A: Physicochem. Eng. Aspects, vol. 337 (2009) 52-56.
[26]T.V. Butkhuzi et al., “Optical and Electrical Properties of Radical
Beam Gettering Epitaxy Grown N- and P-type ZnO Single Crystals”, J Cryst. Growth, 117(1992), 366
[27]Gang Xiong et al., “Control of P- and N-type Conductivity in
Sputter Deposition of Undoped ZnO “, Appl. Phys Lett., 80(2002), 1195-1197
[28]M.Joseph, H.Tabata and T.Kawai, “p-Type Electrical Conduction
in ZnO Thin Films by Ca and N Codoping”, Jpn. J. Appl. Phys., 38(1999), L1205-1207
[29]T.Yamamoto et al., “Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO”, Jpn. J. Appl. Phys., 38(1999),L166-169
[30]A.V.Singh et al., “p-Type Conduction in codoped ZnO Thin Films”, J. Appl. Phys., 93(2003), 396-399
[31]K. Ellmer and A. Klein, 2008, “ZnO and Its Applications”, Springer Series in Materials Science, Vol.104 pp.1-33.
[32]Ziqiang Xu, et al., 2005, “Photoconductive UV Detectors Based
on ZnO Films Prepared by Sol-Gel Method”, Journal of Sol-Gel Science and Technology, Vol.36 pp.223-226.
[33]Yukio Yoshino, et al., 2006, “Zinc Oxide Piezoelectric Thin Films for Bulk Acoustic Wave Resonators”, Murata Manufacturing Co.
[34]Pu Xian Gao and Zhong L. Wang, 2005, “Nanoarchitectures of semiconducting and piezoelectric zinc oxide”, Journal of Applied Physics, Vol.97 044304 .
[35]S. V. Jaskolski and Deep Aggarwal, 1972, “Effect of Uniaxial
Pressure on ZnO Acousto-Electric Devices”, IEEE Transactions on Sonics and Ultrasonics, Vol.SU-I 9 pp.420-424.
[36]Ying He, et al., 2010, “Blue electroluminescence nanodevice prototype based on vertical ZnO nanowire/polymer film on silicon substrate”, Journal of Nanoparticle Research,Vol.12 pp.169-176.
[37]A.Mitra,R.K.Thareja,“Photoluminescence and ultraviolet laser emission from nanocrystalline ZnO thin films” Journal of Applied Physics Vol.89 pp.2025-2028(2001)
[38]J. Meyer, P. Gorrn, S. Hamwi, H. H. Johannes, T. Riedl, W. Kowalsky, “Indium-free transparent organic light emitting diodes with Al doped ZnO electrode grown by atomic layer and pulsed laser deposition”, Appl. Phys. Lett., vol. 93 (2008) 073308.
[39]P. Banerjee, W. J. Lee, K. R. Bae, S. B. Lee, G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films”, J. Appl. Phys., vol. 108 (2010) 043504.
[40]A. Martin, J. P. Espinos, A. Justo, J. P. Holgado, F. Yubero, A. R. Gonzalez-Elipe, “Preparation of transparent and conductive Al-doped ZnO thin films by ECR plasma enhanced CVD”, Surf. Coat. Technol., vol. 151-152 (2002) 289-293.
[41]I. Volintiru, M. Creatore, M. C. M. van de Sanden, “In situ
spectroscopicellipsometry growth studies on the Al-doped ZnO films deposited by remote plasma-enhanced metalorganic chemical vapor deposition”, J. Appl. Phys., vol. 103 (2008) 033704
[42]Tadatsugu Minami, Satoshi Ida, Toshihiro Miyata”High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation”,Thin Solid Films Vol. 416 (2002)
[43]Dengyuan Song, Per Widenborg, Winston Chin, Armin G. Aberle”Investigation of lateral parameter variations of Al-doped zinc oxide films prepared onglass substrates by rf magnetron sputtering”,Solar Energy Materials & Solar Cells Vol. 73 (2002)
[44]Tsutomu Shinagawa, Satomi Otomo, Jun-ichi Katayama, Masanobu Izaki”Electroless deposition of transparent conducting and (0 0 0 1)-oriented ZnO films from aqueous solutions”, Electrochimica Acta Vol. 53 (2007)
[45]X.L. Chen, X.H. Geng, J.M. Xue, L.N. Li”Two-step growth of ZnO films with high conductivity and high roughness”,Journal of Crystal Growth Vol. 299 (2007)
[46]A. El-Shaer, A. Che Mofor, A. Bakin, M. Kreye, A. Waag
“ High-quality ZnO layers grown by MBE on sapphire”, Superlattices and Micro- structures Vol. 38 (2005)
[47]Sang-Moo Park, Tomoaki Ikegami, Kenji Ebihara, Paik-Kyun Shin”Structure and properties of transparent conductive doped ZnO films by pulsed laser deposition”,Applied Surface Science Vol. 253 (2006)
[48]Ü. Özgür,Ya. Et al., 2005, “A comprehensive review of ZnO materials and devices”, Journal of Applied Physics, Vol.98, pp.041301.
[49]S. B. Zhang, S. H. Wei and A. Zunger, “Intrinsic n-type versus
p-type doping asymmetry and thedefect physics of
ZnO,”Phys. Rev.B: Condens. Matter, Vol. 63, pp. 075205-1-
075205-7, 2001.
[50]D. C. Look and B.|Claflin, “P-type doping devices
based onZnO,” Phys. Status Solidi B, Vol. 241, pp. 624-630, 2004.
[51]M. Birkholz, ”Thin film analysis by X-ray scattering”, Addison-Wesley New York (2006).
[52]H. T. Nguyen, et al., 1999, “Structural order of nanocrystalline ZnO film”, J. Phys. Chem. B, vol. 103, pp. 4264-4268.
[53]M. Chen, Z. L. Pei, C. Sun, L. S. Wen, Z. Wang, “Surface characterization of transparent conductive oxide Al-doped ZnO films” J. Cryst. Growth, 220 (2000) 254-262

[54]V. Gupta, A. Mansingh “Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film” J. Appl. Phys., vol.80 (1996) 1063-1073.
[55]J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO:Al films”, J. Appl. Phys., 101 (2007) 083705.
[56]T. Han, F. Y. Meng, S. Zhang, X. M. Cheng, J. I. Oh, “Band gap and electronic properties of wurtzite-structure ZnO co-doped with IIA and IIIA”, J. Appl. Phys., 110 (2011) 063724.
[57]Y. Y. Chen, J. C. Hsu, P. W. Wang, Y. W. Pai, C. Y. Wu, and Y. H. Lin, “Dependence of resistivity on structure and composition of AZO films fabricated by ion beam co-sputtering deposition”, Appl. Surf. Sci., 257 (2011) 3446-3450.
[58]D. K. Schroder “Semiconductor material and device haracterization”, (1990) Wiley, New York.
[59]J. Tauc, R. Grigorovivhi, A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium”, Phys. Status Solidi (B), vol. 15 (1966) 627-637
[60]E. Burstein, “Anomalous optical absorption limit in InSb”, Phys. Rev., vol. 93 (1954) 632-633.
[61]T. S. Moss, “The interpretation of the properties of indium antimonide”, Proc. Phys. Soc. London. Sect. B, vol. 67 (1954) 775-782.
[62]B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, C. G. Granqvist, “Band-gap tailoring of ZnO means of heavy Al doping”, Phys. Rev., vol. 17 (1988) 10244-10248
[63]T. Han, F. Y. Meng, S. Zhang, X. M. Cheng, J. I. Oh, “Band gap and electronic properties of wurtzite-structure ZnO co-doped with IIA and IIIA”, vol. 110 (2011) 063724.
[64]E. Fred Schubert, “Light-emitting Diodes”, Cambridge University Press, 2nd edition, (2006).
[65]T. M. Barnes, et al., 2005, “Room temperature chemical vapor deposition of c-axis ZnO” J. Crystal Growth, vol. 274, pp. 412-417.
[66]J. G. Lu, et al., 2003, “Synthesis and properties of ZnO films with (100) orientation by SS-CVD” Appl. Surf. Sci., vol. 207, pp. 295-299.
[67]N. Fujinura, et al., 1993, “Control of preferred orientation for ZnOx films: control of self-texture”, J. Crystal Growth, vol. 130, pp.269.
[68]B. S. Li, et al., 2003, “Effect of RF power on properties of ZnO thin films grown on Si (001) substrate by plasma enhanced chemical vapor deposition”, J. Crystal Growth, vol. 249, pp. 179-185.
[69]M. Birkholz, 2006, Thin film analysis by X-ray scattering Addison,Wesley New York.
[70]E. Burstein, ”Anomalous Optical Absorption Limit in Insb”,Phys. Rev., 93(1954)p.632-633
[71]T. S. Moss, ”The Interpretation of the Properrties of Indium Antimonide”, Phys. Soc. London Sect. B, 67(1954) p.775-782
[72]B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, and C. G. Granqvist, Physical Review B 37 (1988) 10244
[73]C. Klingshim, Phys. Stat. Sol B 244. 3027(2007)
[74]A. Kaschner, U. Haboeck, Martin Strassburg, MatthiasStrassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R.v Alves, D. M.Hofmann, and B. K. Meyer, Appl. Phys. Lett. 80, 1909 (2002).
[75]M. Sanmyo, Y. Tomita, K. Kobayashi, Chem.Mater. 15(2003) 819.
[76]J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, L.D. Chen, Appl. Phys. Lett. 84(2004) 541.
[77]M. Futsuhara, K. Yoshioka, O. Takai, Thin Solid Films 322 (1998) 274.
[78]Y. Yan, S.B. Zhang, Phys. Rev. Lett. 86(2001) 5723.
[79]W. W.Liu, B. Yao, Z. Z. Zhang, Y. F. Li, B.H. Li, C.X. Shan, J. Y. Zhang, D.Z. Shen, and X. W. Fan “Doping efficiency, optical and electrical properties of nitrogen-doped ZnO films”,J. Appl. Phys. 109,093518(2011)
[80]M. Birkholz, 2006, Thin film analysis by X-ray scattering Addison,Wesley New York.
[81]D. K. Schroder , 1990 , Semiconductor material and device haracterization, Wiley, New York.
[82]Ke Yue Wu, Qing Qing Fang, Wei Na Wang, Cgang Zhou, Wen Juan Huang, Jin Guang Li, Qing Rong Lv, Yan Mei Liu, Qi Ping Zhang, and Han Ming Zhang ”Influence of nitrogen on the defects and magnetism of ZnO:N thin films” ,J. Appl. Phys. 108, 063530(2010)
[83]B. Lin, Z. Fu, Y. Jia and G. Liao, “Defect photoluminesce of undoping ZnO films and its dependence on annealing condition,” J.Electrochem. Soc., Vol 148, pp. 9110-9113,2001.
[84]N. G. KAKAZEY, L. A. KLO&KOV, I. I. TIMOFEEVA, T. V.
Sreckovic, B. A. MARINKOVI& , M. M. RISTI& “Evolution
of the Defect Structure of Zinc-Oxide as a Consequence of
Tribophysical Activation”, Cryst. Res. Technol. 34 1999 7
859–866


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top