跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/16 03:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宣任
研究生(外文):Xuan -Ren Chen
論文名稱:以數位訊號處理器為基礎之電磁懸浮平台驅動與伺服控制系統設計
論文名稱(外文):DSP-based Driving and Servo Control Strategies for Electromagnetic-levitation Platform
指導教授:李政道李政道引用關係
指導教授(外文):Jeng-Dao Lee
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:自動化工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:114
中文關鍵詞:磁浮系統遞迴步階滑動模式控制數位訊號處理器
外文關鍵詞:maglev systembackstepping control(BSC)sliding mode control(SMC)digital signal processor(DSP)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:502
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在磁浮系統中,由於電磁場中氣隙、電流與電磁力之間的非線性關係,導致系統具有高度非線性且不穩定的特性。因此本論文先建立電磁鐵等效電路模型,再根據牛頓第二運動定律建立系統動態模型,以設計出多樣性主動控制策略來維持系統的穩定性。首先將針對磁浮驅動與控制系統利用遞迴步階(Backstepping)方式進行控制器設計,再進一步結合滑動模式控制(Sliding Mode Control, SMC)以使控制系統擁有更佳之強健性。此外,為簡化控制系統架構並進一步增加系統響應,在第四章中將再設計一具脈波寬度調變(Pulse Width Modulation, PWM)之電流控制器,除系統穩定性可確保之外,更可優化暫態響應以及加速誤差收斂時間。最後更利用數值模擬與數位訊號處理器實驗平台,驗證所設計之電磁懸浮式定位系統之可行性。

The nonlinear relationship among the air gap, current and magnetic forces will result in highly nonlinear and unstable characteristics in maglev system. In this thesis, the electromagnetic equivalent circuit model is established, and then the dynamic model will be derived by using Newton''s second law of motion. Based on the dynamic model, control strategies are designed to keep the maglev system stable. In the control systems, a backstepping control (BSC) is firstly proposed due to the systematic design step. Furthermore, the backstepping design steps are used to design a sliding mode control (SMC), it will make the maglev control system has the better control performance. To simplify the control scheme and increase the system response, the installation of a hardware-based pulse-width-modulation type current controller is designed in the fourth chapter. Besides, the stability of the system can be ensured and the better transient response and accelerated error convergence time can be seen. Finally, the effectiveness and robustness of the proposed control strategies in this master thesis are verified by numerical simulations and digital-signal-processor(DSP)-based experimental results.

中文摘要.....i
Abstract.....ii
誌謝.....iii
目錄.....iv
表目錄.....viii
圖目錄.....ix
第一章、緒論.....1
1.1前言.....1
1.2文獻回顧.....2
1.3研究目的與動機.....8
1.4論文架構.....10
第二章、磁浮平台數學模型與系統架構.....11
2.1簡介.....11
2.2磁浮平台原理與磁力分析.....11
2.2.1磁浮平台原理.....11
2.2.2磁力分析.....13
2.3磁浮平台之動態模型分析.....17
2.4系統架構.....18
2.4.1核心處理器.....19
2.4.2氣隙感測器.....20
2.4.3霍爾電流感測器.....22
2.5電路架構.....24
2.5.1介面電路.....24
2.5.2隔離電路.....25
2.5.3驅動電路.....25
2.5.4箝制電路.....27
第三章、電壓控制器設計.....30
3.1簡介.....30
3.1.1數位控制系統流程.....30
3.1.2數位訊號濾波器.....32
3.2 電壓控制為基礎之PID控制器.....33
3.2.1 電壓控制為基礎之PID控制簡介.....33
3.2.2 電壓控制為基礎之PID控制流程.....34
3.3電壓控制為基礎之遞迴步階控制器.....36
3.3.1電壓控制為基礎之遞迴步階控制器簡介.....36
3.3.2電壓控制為基礎之遞迴步階控制器設計.....36
3.4電壓控制為基礎之滑動遞迴步階控制器.....41
3.4.1電壓控制為基礎之滑動模式控制器簡介.....41
3.4.2電壓控制為基礎之滑動遞迴步階控制器設計.....42
3.5電壓控制為基礎之磁浮系統模擬結果.....45
3.5.1 模擬規畫.....46
3.5.2電壓控制為基礎之PID控制器模擬結果.....46
3.5.3電壓控制為基礎之遞迴步階控制器模擬結果.....50
3.5.4電壓控制為基礎之滑動遞迴步階控制器模擬結果.....53
3.6電壓控制為基礎之磁浮系統實驗結果.....57
3.6.1 電壓控制為基礎之PID控制器實驗結果.....57
3.6.2電壓控制為基礎之遞迴步階控制器實驗結果.....60
3.6.3電壓控制為基礎之滑動遞迴步階控制器實驗結果.....64
3.7本章總結.....68
第四章、電流控制器設計.....69
4.1簡介.....69
4.2電磁鐵電路分析與電流控制設計.....71
4.2.1電磁鐵驅動電路分析.....71
4.2.2電流控制器設計.....71
4.3電流控制為基礎之PID控制器.....77
4.4 電流控制為基礎之遞迴步階控制器.....77
4.4.1電流控制為基礎之遞迴步階控制器簡介.....77
4.4.2電流控制為基礎之遞迴步階控制器設計.....78
4.5 電流控制為基礎之滑動遞迴步階控制器.....80
4.6電流控制為基礎之磁浮系統實驗結果.....82
4.6.1 電流控制為基礎之PID控制器實驗結果.....83
4.6.2電流控制為基礎之遞迴步階控制器實驗結果.....86
4.6.3電流控制為基礎之滑動遞迴步階控制器實驗結果.....89
4.7本章總結.....94
第五章、結論與未來展望.....95
5.1結論.....95
5.2未來展望.....98
參考文獻.....100
附錄一.....106
附錄二.....107
Extended Abstract.....108
個人簡歷.....113

[1]Z. Long, G. He, and S. Xue, “Study of EDS & EMS hybrid suspension system with permanent-magnet halbach array,” IEEE ransactions on Magnetics, vol. 47, no. 12, pp. 4717–4724 December 2011.
[2]L. Zhu and C. R. Knospe, “Modeling of nonlaminated electromagnetic suspension systems,” IEEE Transactions on Magnetics, vol. 15, no. 1, pp. 59–69, February 2010.
[3]T. Schuhmann, W. Hofmann and R. Werner, “Improving operational performance of active magnetic bearings using kalman filter and state feedback control,” IEEE Transactions on Magnetics, vol. 59, no. 2, pp. 821–829, February 2012.
[4]K. Matsuda, Y. Kanemitsu, and S. Kijimoto, “Optimal number of stator poles for compact active radial magnetic bearings,” IEEE Transactions on Magnetics, vol. 43, no. 8, pp. 3420–3426, August 2007.
[5]L. L. Tian, X. P. Ai, and Y. Q. Tian, “Analytical model of magnetic force for axial stack permanent magnetic bearings,” IEEE Transactions on Magnetics, vol. pp, no. 99, pp. 1–10.
[6]K. Sawada, “Outlook of the superconducting maglev,” IEEE Proceedings, vol. 97, no. 11, pp. 1881–1885, November 2009.
[7]P. Holmer, “Faster than a speeding bullet train,” IEEE Spectrum, vol.40, pp. 30-34, August 2003.
[8]L. J. Xiao, C. Y. Sun, and P. Li, “Analysis of radial magnetic bearing used in magnetic suspension wind power generator,” 2010 International Conference on E-Product E-Service and E-Entertainment (ICEEE), pp. 1–4, November 2010.
[9]S. Liu, Z. Bian, D. Li, and W. Zhao, “A magnetic suspended self-pitch vertical axis wind generator,” Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific, pp. 1–4, March 2010.
[10]侯信利, “磁浮傳輸之懸浮控制系統設計,” 南台科技大學電機工程研究所碩士論文, 2002年6月。
[11]H. Won, S. H. Lee, and G. S. Park, “Analysis and measurement of the magnetophoretic display system by using bistable magnetic ball for extremely low power consumptions,” 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC), pp. 1, May 2010.
[12]D. Jiang, J. X. Yang, D. Jiang, and L. L. MA, “Study of balanced stability on the hybrid magnetic levitation ball system,” 2010 International Conference on Electrical and Control Engineering (ICECE), pp. 2009–2012, June 2010.
[13]D. Jiang, J. X. Yang, L. L. Ma, and D. Jiang, “Model building and simulating for hybrid magnetic levitation ball system,” 2010 International Conference on Mechanic Automation and Control Engineering (MACE), pp. 6105–6110, June 2010.
[14]謝昆達, “磁浮系統之微量電子天平,” 中華科技大學飛機系統工程研究所碩士學位論文, 2010年7月。
[15]陳盈佐, “磁浮系統之建置與非線性控制設計,” 國立東華大學電機工程學系碩士論文, 2010年7月。
[16]徐子堯, “三極全磁浮系統之控制與實驗驗證,” 國立中正大學機械工程學系碩士論文, 2009年7月。
[17]H. O. Kang, U. J. Na, D.D. Lee, and K. H. Seo, “Design and control of energy efficient magnetic bearings,” ICCAS 2008. International Conference on Control, Automation and Systems, pp. 1220–1223, October 2008.
[18]S. L. Chen, and C. T. Hsu, “Optimal design of a three-pole active magnetic bearing,” IEEE Transactions on Magnetics, vol. 38, no. 5, pp. 2071–2074, September 2002.
[19]Z. Deng, J. Zheng, H. Song, L. Liu, L. Wang, Y. Zhang, S. Wang, and J. Wang, “Free vibration of the high temperature superconducting maglev vehicle model,” IEEE Transactions on Applied Superconductivity, vol. 17, no. 2, pp. 2071–2074, June 2007.
[20]H. Han, B. Yim, N. Lee , Y. Hur, and J. Kwon, “Vibration analysis of a maglev vehicle using electromagnetic suspension” ICEMS. International Conference on Electrical Machines and Systems, 2007, pp. 1963–1969, October 2007.
[21]J. Zheng, Z. Deng, L. Wang, L. Liu, Y. Zhang, S. Wang, and J. Wang
, “Stability of the maglev vehicle model using bulk high tc superconductors at low speed,” IEEE Transactions on Applied Superconductivity, vol. 17, no. 2, pp. 2103–2106, June 2007.
[22]林省揚, “鋼鐵廠中無接觸式鋼板搬運系統之電機特性分析與整合性驅控架構建立,” 國立中山大學 電機工程學系博士論文, 2009 年7月。
[23]R. B. Owen, M. Maggiore, and J. Apkarian, “A high-precision, magnetically levitated positioning stage,” IEEE Transactions on Magnetics, vol. 26, no. 3, pp. 82–95, June 2006.
[24]K. H. Park, K. Y. Ahn, S. H. Kim, and Y. K. Kwak, “Wafer distribution system for a clean room using a novel magnetic suspension technique,” IEEE Transactions on Magnetics, vol. 3, no. 1, pp. 73–78, March 1998.
[25]R. J. Wai, and L. C. Shih, “Design of voltage tracking control for DC-DC boost converter via total sliding-mode technique,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2502–2511, June 2011.
[26]N. Gulati, and E. J. Barth, “A globally stable ,load-independent pressure observer for servo control of pneumatic actuators,” IEEE Transactions on Magnetics, vol. 14, no. 3, pp. 295-306, JUNE 2009.
[27]T. O. Kowalska, M. Kaminski, and K. Szabat, “Implementation of a sliding-mode controller with an integral function and fuzzy gain value for the electrical drive with an elastiv joint,” IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1309–1317, April 2010.
[28]Y. Li, and Q. Xu, “Intelligent adaptiv sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator,” IEEE Transactions on Control Systems Technology, vol. 18, no. 4, pp. 798–810, July 2010.
[29]S. C. Tan, Y. M. Lai, and C. K. Tse, “Indirect sliding mode control of power converters via double integral sliding surface,” IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 600–611, March 2008.
[30]M. Gokasan, S. Bogosyan, and D. J. Goering “Sliding mode based powertrain control for efficiency improvement in series hybrid-electric vehicles,” IEEE Transactions on Power Electronics, vol. 21, no. 3, pp. 779–790, May 2006.
[31]Y. J. Huang, T. C.Kuo, and S. H. Chang, “Adaptive sliding-mode control for nonlinear systems with uncertain parameters,” Proceeding of the IEEE International Conference on Automation and Logistics Qin Gdao ,China, pp. 1734–1738, September 2008.
[32]F. F. M. EI-Sousy, “Robust wavelet-neural-network sliding-mode control system for permannet magnet synchronous motor drive,” IET Transactions on Power Electronics, vol. 5, pp. 113–132, January 2011.
[33]F. J. Lin, S. Y. Chen, and M. S. Huang, “Intelligent doubele integral sliding-mode control for five-degree-of-freedom active magnetic bearing system,” IET Control Theory and Applications, vol. 5, pp. 1287–1303, July 2011.
[34]夫雷胥, 電磁學天堂密技, 天下遠見出版,2010。
[35]R. J. Wai, and J. D. Lee, “Performance comparisons of model-free control strategies for hybrid magnetic levitation system,” IEE Proceedings – Electric Power Applications, vol. 152, no. 6, pp. 1556–1564, November 2005.
[36]王順忠, 電力電子學, 東華書局, 1998。
[37]陳妤甄, “雙併式降壓轉換器,” 國立中山大學電機工程學系碩士論文, 2009年8月。
[38]劉光轅, “利用主動箝位電路達到柔性切換之降壓型轉換器,” 大同大學電機工程研究所碩士論文, 2000年6月。
[39]蘇孝傑, “降壓式零電流切換轉換器之分析與設計,” 國立台灣海洋大學電機工程學系碩士學位論文, 2009年6月。
[40]莫漢, 電力電子學, 全華出版社, 2003。
[41]慧特, 數位訊號處理器, 湯姆生出版, 2002。
[42]沈金鐘, PID控制器, 滄海書局, 2001。
[43]張碩, 自動控制系統, 鼎茂圖書出版社, 2003。
[44]陳永平、張俊林, 可變控制設計(修訂版), 全華科技圖書, 2001。
[45]GEORGE C. CHRYSSIS著,梁適安譯,「高頻交換式電源供應器」,全華科技圖書,2000。
[46]謝旻宏, “一階具時間延遲系統以實驗方法進行PI/PID控制器的微調,” 屏東科技大學機械工程系碩士學士論文,2004年。
[47]胥文宗, “以TL494為架構降壓式電源轉換器之非線性分析,” 國立交通大學電機資訊學院電機與控制學程碩士論文,2006年7月。

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊