[1] 楊博森,(2000),線性馬達系統推導與控制模擬研究,逢甲大學自動工程研究所 碩士論文。[2] Yongdae Kim, Byounguk Sohn, Woosub Youm, Jongkyu Jung, Jonghyun Lee, and Kyihwan Park, (2008), Voice Coil Motor Nano Stage with an Eddy Current Damper, 10th Intl. Conf. on Control, Automation, Robotics and Vision Hanoi, Vietnam.
[3] Sebastian Polit, Jingyan Dong, (2011), Development of a High-Bandwidth XY Nano positioning Stage for High-Rate Micro-/Nanomanufacturing, IEEE/ Asme Transactions on Mechatronics, vol.16, no.4, pp.724-733.
[4] Ge P. and M. Jouaneh, (1997), Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Engineering, 20, pp. 99-111.
[5] 李傑仁,(2003),具非對稱型磁滯系統控制及其於壓電驅動平台定位控制之應用,國立成功大學航空太空工程研究所 碩士論文。[6] 謝榮傑,(2002),微定位平台的CMAC控制和增益規劃控制,逢甲大學自動控制工程研究所 碩士論文。[7] 楊智翔,(2004),壓電磁滯適應類神經控制補償之研究,國立高雄應用科技大學機械與精密工程研究所 碩士論文。[8] Y. S. Kung and R. F. Fung, (2002), “Precision control of a piezoceramic actuator using neural networks,” IEEE conference on Control Application,pp. 1866-1871.
[9] Y. Stepanenko and C. Y. Su, (1998), “Intelligent control of piezoelectric actuators,” Proceedings of the 37th IEEE conference on Decision and Control, pp. 4234-4239.
[10] C. L. Hwang , C. Jan and Y. H. Chen, (2001), “Piezomechanics Using Intelligent Variable-Structure Control,” IEEE Transactions on Industrial Electronics, 48, pp. 47-59.
[11] C. L. Hwang and C. Jan, (2003), “A Reinforcement Discrete Neuro-Adaptive Control for Unknown Piezoelectric Actuator Systems With Dominant Hysteresis,” IEEE Transactions on Neural Networks, 14, pp. 66-78.
[12] Y. C. Huang and D. Y. Lin, (2004), Ultra-Fine Tracking Control on Piezoelectric Actuated Motion Stage Using Piezoelectric Hysteretic Model. Asian Journal of Control, 6, pp. 208-216.
[13] J. C. Shen, W. Y. Jywe, C. H. Liu, Y. T. Jian and Y. F. Deng, (2005), Integral Sliding Mode Control of A Piezoelectric Actuated Motion Stage, IFAC World Congress.
[14] U. Itkis, (1976), Control Systems of Variable Structure, New York: John Wieley, 1976.
[15] V. I. Utkin, (1978), Sliding Modes and Their Application in Variable Structure Systems, Moscow: MIR publishers.
[16] J. J. E. Slotine and S. S. Sastry, (1983), Tracking Control of Nonlinear Systems Using Sliding Surfaces with Application to Robot Manipulators, International Journal of Robust and Nonlinear Control, vol. 38, pp.465-492.
[17] F. U. Chun and J.Y. Xie, (2001), Self-Learning Fuzzy Prediction for Modeling Uncertainty in Sliding Mode Control, Journal of Shanghai Jiaotong University, vol.35, no.11.
[18] K. J. Lee, H. M. Kim and J. S. Kim, (2004), Design of a Chattering-free Sliding Mode Controller with a Friction Compensator for Motion Control of a Ball–screw System , Systems and Control Engineering, vol. 218.
[19] Demosthenis D. Rizos and Spilios D. Fassois (2009), Friction Identification Based Upon the LuGre and Maxwell Slip Models, IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, vol. 17, no. 1, pp. 153-160.
[20] Demosthenis D. Rizos and Spilios D. Fassois (2005), Maxwell Slip Model Based Identification and Control of Systems with Friction, Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005 Seville, Spain, December, pp. 4578-4583.
[21] A. Amthor, T. Hausotte, Ch. Ament, P. Li, G. Jaeger (2008), FRICTION IDENTIFICATION AND COMPENSATION ON NANOMETER SCALE, Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul, Korea, July, pp. 2014-2019.
[22] C. Canudas de Wit , H. Olsson, K. J. htrom, and P.Lischinsky (1995),“ A New Model for Control of Systems with Friction” , IEEE TRANSACTIONS ONAUTOMATIC CONTROL, vol.40, no.3, pp.153~160.
[23] B. Armstrong-Helouvry, P. Dupont, and C. Canudas de Wit (1994), ”A survey of models, analysis tools and compensation methods for the control of machines with friction,” Automatica, vol. 30, no. 7, pp.1083-1183.
[24] P. R.Dahl, (1976)“Solid Friction Damping of Mechanical Vibrations,” AIAA Journal, vol. 14, no. 12, pp. 1675-1682.
[25] C. Canudas de Wit, H. Olsson, K. J. Ǻstrom, and P. Lischinsky, (1995) ”A new model for control of systems with friction,” IEEE TRANSACTIONS ONAUTOMATIC CONTROL, vol. 40, no. 3, pp. 419-425.
[26] H. Gu and G. Song, (2004)“Adaptive robust sliding-mode control of a flexible beam using PZT sensor and actuator”, Proceeding of the IEEE International Symposium on Intelligentl Control, pp. 78-83.
[27] Y. Zhang, G. Liu and A. A. Goldenberg, (2002)“Friction compensation with estimated velocity,” Proceedings of IEEE International Conference on Robotics and Automation, Washington USA, vol. 3, pp. 2650-2655.
[28] M. R. Popovic, D. M. Gorinevsky, and A. A. Goldenberg, (2000)“High-precision positioning of a mechanism with nonlinear friction using a fuzzy logic pulse controller,” IEEE TRANSACTIONS ONAUTOMATIC CONTROL, vol. 8, no 1, pp. 151-158.
[29] K. Mainali, S. K. Panda, J. X. Xu, T. Senju, (2004)“Repetitive position tracking performance enhancement of linear ultrasonic motor with sliding mode-cum-iterative learning control,” Mechatronics, ICM ''04. Proceedings of the IEEE International Conference, pp. 352-357.
[30] K. K. Tan, T. H. Lee, H. X. Zhou, (2001)“Micro-positioning of linear-piezoelectric motors based on a learning nonlinear PID controller,” IEEE/ASME Trans. Mechatron., vol. 6, no. 4, pp. 428-436.
[31] 吳家鴻,(2007),六軸奈米量測機平台之研製,國立成功大學機械工程研究所 碩士論文。[32] 沈金鐘,(2001),PID控制理論:理論調整與實現,滄海書局。
[33] K. J. Astrom, T. Haglund, C. C Hang and W. K. Ho, (1984), Automatic tuning and Adaptation for PID Controllers – a Survey, Automatica, Vol. 20, pp. 645 – 651.
[34] K. J. Astrom and T. Haglund, (1995), PID controllers: theory, design, and tuning, Research Triangle Park, NC: ISA.
[35] 陳永平、張浚林,(2002),可變結構控制設計(修訂版),全華圖書科技。
[36] Richard C. Dorf and Robert H. Bishop, (2005), Modern Control Systems, 10th Edition, NJ:Pearson Education.
[37] J. J. E. Slotine and S. S. Sastry, (1983), Tracking Control of Nonlinear Systems Using Sliding Surfaces with Application to Robot Manipulators, International Journal of Robust and Nonlinear Control, Vol. 38, pp. 465-492.