跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/18 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊櫂嘉
研究生(外文):Jang-Jia Yang
論文名稱:含摩擦力補償之奈米級循跡控制法
論文名稱(外文):Friction Compensation for Nanoscale Tracking Control Method
指導教授:沈金鐘
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:自動化工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:89
中文關鍵詞:摩擦力Maxwell slip模型反摩擦力模型PID控制器Sliding-mode控制器
外文關鍵詞:FrictionMaxwell slip modelInverse frictionSliding-mode controllerPID controller
相關次數:
  • 被引用被引用:6
  • 點閱點閱:476
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:1
在機械控制系統中,幾乎都會有摩擦力的產生,而此現象會影響到控制系統的性能,尤其在精度與準度要求較高的系統中,其影響更為明顯,因此無法完全忽略其存在。為了減少摩擦力所產生的影響,本研究論文選擇建立摩擦力模型,以此模型對系統做補償的動作。本研究論文將探討以Maxwell slip模型為基礎的反摩擦力模型,並且使用六自由度奈米級移動平台為實驗機台,搭配上比例積分微分(PID)控制器以及順滑模態(Sliding-mode)控制器,以驗證摩擦力補償的狀況。首先將建立Maxwell slip模型,然後將機械系統的動態模型考慮進來,經整理後可推導出包含Maxwell摩擦力模型及系統動態模型的反模型,此反模型之輸入為期望之位移,前饋控制器輸出為達到期望位移所需的力量,因此可作為系統的摩擦力補償。此模型為非線性,因此要求取最佳的模型參數有其困難度,本文利用雙層式的最佳化方式來求取其參數,第一層利用基因演算法求取非線性的參數,取得非線性部分後再利用第二層的最小平方法來求取整個反模型的最佳參數。最後將其使用至系統中,並透過設計好的PID控制器與Sliding-mode 控制器,經由循跡的方式,來驗證補償摩擦現象的效能。

In the mechanical control system, there exist friction force, and it can degrade the performance of the control system. Especially in high-precision system, the effect of friction can’t be ignored. To overcome the effects of friction, the best way is to establish a friction model of the system and use this model to compensate the system. In this paper, the Maxwell slip model based inverse friction model is proposed. This inverse model takes both the system dynamics and friction force into account. For estimating the parameters of this model, a two-phase hybrid optimization scheme is used. The first phase utilizes Genetic Algorithm-based optimization and the second phase utilizes Minimized Least Square method. Finally, the inverse model used the feed forward controller in combination in combination with PID controller and Sliding-mode controller as the feedback controller in used to control a linear guide way supported stage to demonste the performance of the proposed method.

第一章 緒論...1
1.1 前言...1
1.2 研究動機與目的...2
1.3 文獻回顧...3
1.4 論文架構...6
第二章 摩擦力模型...8
2.1 Maxwell Slip 模型...8
2.2 模型參數的判別...11
2.2.1 基因演算法...13
2.2.2 最小平方法...15
2.2.3 適應值定義...16
第三章 平台架構...17
3.1 六自由度奈米級移動平台...18
3.2 六自由度雷射干涉儀量測系統...21
3.3 六自由度回授控制系統...23
第四章 控制器設計...26
4.1 繼電器回授法...26
4.2 PID控制器...32
4.3 Sliding-mode 控制器...34
4.3.1 順滑模態...36
4.3.2 迫近條件...40
第五章 實驗控制結果...43
5.1 摩擦力模型...43
5.2 PID控制器...46
5.3 Sliding-mode 控制器...61
第六章 結論與未來展望...77
6.1 結論...77
6.2 未來展望...77


[1] 楊博森,(2000),線性馬達系統推導與控制模擬研究,逢甲大學自動工程研究所 碩士論文。
[2] Yongdae Kim, Byounguk Sohn, Woosub Youm, Jongkyu Jung, Jonghyun Lee, and Kyihwan Park, (2008), Voice Coil Motor Nano Stage with an Eddy Current Damper, 10th Intl. Conf. on Control, Automation, Robotics and Vision Hanoi, Vietnam.
[3] Sebastian Polit, Jingyan Dong, (2011), Development of a High-Bandwidth XY Nano positioning Stage for High-Rate Micro-/Nanomanufacturing, IEEE/ Asme Transactions on Mechatronics, vol.16, no.4, pp.724-733.
[4] Ge P. and M. Jouaneh, (1997), Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Engineering, 20, pp. 99-111.
[5] 李傑仁,(2003),具非對稱型磁滯系統控制及其於壓電驅動平台定位控制之應用,國立成功大學航空太空工程研究所 碩士論文。
[6] 謝榮傑,(2002),微定位平台的CMAC控制和增益規劃控制,逢甲大學自動控制工程研究所 碩士論文。
[7] 楊智翔,(2004),壓電磁滯適應類神經控制補償之研究,國立高雄應用科技大學機械與精密工程研究所 碩士論文。
[8] Y. S. Kung and R. F. Fung, (2002), “Precision control of a piezoceramic actuator using neural networks,” IEEE conference on Control Application,pp. 1866-1871.
[9] Y. Stepanenko and C. Y. Su, (1998), “Intelligent control of piezoelectric actuators,” Proceedings of the 37th IEEE conference on Decision and Control, pp. 4234-4239.
[10] C. L. Hwang , C. Jan and Y. H. Chen, (2001), “Piezomechanics Using Intelligent Variable-Structure Control,” IEEE Transactions on Industrial Electronics, 48, pp. 47-59.
[11] C. L. Hwang and C. Jan, (2003), “A Reinforcement Discrete Neuro-Adaptive Control for Unknown Piezoelectric Actuator Systems With Dominant Hysteresis,” IEEE Transactions on Neural Networks, 14, pp. 66-78.
[12] Y. C. Huang and D. Y. Lin, (2004), Ultra-Fine Tracking Control on Piezoelectric Actuated Motion Stage Using Piezoelectric Hysteretic Model. Asian Journal of Control, 6, pp. 208-216.
[13] J. C. Shen, W. Y. Jywe, C. H. Liu, Y. T. Jian and Y. F. Deng, (2005), Integral Sliding Mode Control of A Piezoelectric Actuated Motion Stage, IFAC World Congress.
[14] U. Itkis, (1976), Control Systems of Variable Structure, New York: John Wieley, 1976.
[15] V. I. Utkin, (1978), Sliding Modes and Their Application in Variable Structure Systems, Moscow: MIR publishers.
[16] J. J. E. Slotine and S. S. Sastry, (1983), Tracking Control of Nonlinear Systems Using Sliding Surfaces with Application to Robot Manipulators, International Journal of Robust and Nonlinear Control, vol. 38, pp.465-492.
[17] F. U. Chun and J.Y. Xie, (2001), Self-Learning Fuzzy Prediction for Modeling Uncertainty in Sliding Mode Control, Journal of Shanghai Jiaotong University, vol.35, no.11.
[18] K. J. Lee, H. M. Kim and J. S. Kim, (2004), Design of a Chattering-free Sliding Mode Controller with a Friction Compensator for Motion Control of a Ball–screw System , Systems and Control Engineering, vol. 218.
[19] Demosthenis D. Rizos and Spilios D. Fassois (2009), Friction Identification Based Upon the LuGre and Maxwell Slip Models, IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, vol. 17, no. 1, pp. 153-160.
[20] Demosthenis D. Rizos and Spilios D. Fassois (2005), Maxwell Slip Model Based Identification and Control of Systems with Friction, Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005 Seville, Spain, December, pp. 4578-4583.
[21] A. Amthor, T. Hausotte, Ch. Ament, P. Li, G. Jaeger (2008), FRICTION IDENTIFICATION AND COMPENSATION ON NANOMETER SCALE, Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul, Korea, July, pp. 2014-2019.
[22] C. Canudas de Wit , H. Olsson, K. J. htrom, and P.Lischinsky (1995),“ A New Model for Control of Systems with Friction” , IEEE TRANSACTIONS ONAUTOMATIC CONTROL, vol.40, no.3, pp.153~160.
[23] B. Armstrong-Helouvry, P. Dupont, and C. Canudas de Wit (1994), ”A survey of models, analysis tools and compensation methods for the control of machines with friction,” Automatica, vol. 30, no. 7, pp.1083-1183.
[24] P. R.Dahl, (1976)“Solid Friction Damping of Mechanical Vibrations,” AIAA Journal, vol. 14, no. 12, pp. 1675-1682.
[25] C. Canudas de Wit, H. Olsson, K. J. Ǻstrom, and P. Lischinsky, (1995) ”A new model for control of systems with friction,” IEEE TRANSACTIONS ONAUTOMATIC CONTROL, vol. 40, no. 3, pp. 419-425.
[26] H. Gu and G. Song, (2004)“Adaptive robust sliding-mode control of a flexible beam using PZT sensor and actuator”, Proceeding of the IEEE International Symposium on Intelligentl Control, pp. 78-83.
[27] Y. Zhang, G. Liu and A. A. Goldenberg, (2002)“Friction compensation with estimated velocity,” Proceedings of IEEE International Conference on Robotics and Automation, Washington USA, vol. 3, pp. 2650-2655.
[28] M. R. Popovic, D. M. Gorinevsky, and A. A. Goldenberg, (2000)“High-precision positioning of a mechanism with nonlinear friction using a fuzzy logic pulse controller,” IEEE TRANSACTIONS ONAUTOMATIC CONTROL, vol. 8, no 1, pp. 151-158.
[29] K. Mainali, S. K. Panda, J. X. Xu, T. Senju, (2004)“Repetitive position tracking performance enhancement of linear ultrasonic motor with sliding mode-cum-iterative learning control,” Mechatronics, ICM ''04. Proceedings of the IEEE International Conference, pp. 352-357.
[30] K. K. Tan, T. H. Lee, H. X. Zhou, (2001)“Micro-positioning of linear-piezoelectric motors based on a learning nonlinear PID controller,” IEEE/ASME Trans. Mechatron., vol. 6, no. 4, pp. 428-436.
[31] 吳家鴻,(2007),六軸奈米量測機平台之研製,國立成功大學機械工程研究所 碩士論文。
[32] 沈金鐘,(2001),PID控制理論:理論調整與實現,滄海書局。
[33] K. J. Astrom, T. Haglund, C. C Hang and W. K. Ho, (1984), Automatic tuning and Adaptation for PID Controllers – a Survey, Automatica, Vol. 20, pp. 645 – 651.
[34] K. J. Astrom and T. Haglund, (1995), PID controllers: theory, design, and tuning, Research Triangle Park, NC: ISA.
[35] 陳永平、張浚林,(2002),可變結構控制設計(修訂版),全華圖書科技。
[36] Richard C. Dorf and Robert H. Bishop, (2005), Modern Control Systems, 10th Edition, NJ:Pearson Education.
[37] J. J. E. Slotine and S. S. Sastry, (1983), Tracking Control of Nonlinear Systems Using Sliding Surfaces with Application to Robot Manipulators, International Journal of Robust and Nonlinear Control, Vol. 38, pp. 465-492.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊