跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/27 23:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭易承
研究生(外文):Yi-Cheng Zheng
論文名稱:以分子動力學模擬鋁沉積在銅基材之研究
論文名稱(外文):Molecular Dynamic Simulation of Al Clusters Deposition on Cu Substrate
指導教授:陳興松
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:64
中文關鍵詞:分子動力學週期邊界緊束法勢能函數Verlet鄰近表列法
外文關鍵詞:Molecular dynamicsperiodic boundary conditiontight-binding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以FCC結構之銅晶體作為基板、Al為沉積原子,運用分子動力學的方法來模擬研究Al原子沉積在銅基板後表面的形貌,和Al原子在沉積過程中的物理機制。本研究的模擬參數包含Al沉積原子的入射速率、入射動能、入射角度和基板溫度。研究採用週期邊界法來模擬整個真實的系統大小及以Gear’s五階預測修正法來計算系統原子位移後的位置、速度和加速度,並利用多體勢能的緊束法(Tight-binding)勢能函數與Verlet鄰近表列的演算式,來計算原子的交互作用力。
由模擬的結果可以得知,在原子入射能量較小狀態時,沉積速率對於薄膜的結構並無明顯的影響;且在此條件下的沉積過程中Al原子處於低入射動能(10eV)狀態,即使能量和溫度升高Al原子的沉積薄膜的覆蓋率仍無明顯改變。此外模擬結果亦顯示,薄膜的成長方式是屬於核成長型,隨著溫度的上升原子擴散程度也會增加。
本文最後並提出以分子動力學方法模擬研究原子沉積的瓶頸及需要改進的方向,期望後續研究能提高此模擬法的效能,使其將來能有助於相關業界的參數設定和相關設備的設計。


In this study, the copper crystal with face center cubic (FCC) structure serves as the substrate and the aluminum (Al) as the deposited atoms. Molecular dynamics was employed to investigate the surface topography of the Cu structure which was covered by the Al atoms, and to study the physical mechanism of the process. The simulation parameters include incident energy, incident angle, system temperature, and deposition rate. This study used periodic boundary condition to simulate the real system and Gear’s predictor-corrector algorithms to calculate the position, velocity, and acceleration of the atoms after each time step. The second-moment approximation of the tight-binding (TB-SMA) many body potential was employed to calculate interaction force between the atoms.
According to the simulation results, the influence of deposition rate on the deposited thin film was not significant when the atomic incident energy was low. And, the Al atoms were low incident energy (10eV) at deposition process in this situation. Even if the energy and the temperature increased, the coverage rate of Al atoms film was not significant change. In addition, the simulation results also show, the growth type of film was belong to nuclear growth type. And when the temperature risen the atomic diffusion degree was increased.
Finally, the bottlenecks and the improve method of the molecular dynamics simulation are proposed and suggested for accelerating the development and application of this simulation method.


摘要 ..............i
Abstract ..............iii
致謝 ..............v
目錄 ..............vi
表目錄 ..............ix
圖目錄 ..............x
符號說明 ..............xiii
第一章 緒論 ..............1
1.1 前言 ..............1
1.2 分子動力學模擬薄膜製程文獻回顧 ..............4
1.3 研究動機與目的 ..............8
1.4 本文架構 ..............9
第二章 分子動力學之原理 ..............11
2.1 分子間作用力與勢能函數 ..............11
2.1.1 二體勢能函數 ..............12
2.1.2 多體勢能函數 ..............13
2.2 截斷半徑 ..............16
2.3 運動方程式 ..............16
2.4 週期邊界 ..............17
2.5 最小映像法則 ..............18
2.6 Verlet表列法和Cell Link表列法 ..............19
2.6.1 Verlet表列法 ..............19
2.6.2 Cell Link表列法 ..............20
2.6.3 Verlet結合Cell Link表列法 ..............20
2.7 初始速度設定 ..............21
2.8 溫度修正 ..............22
2.9 Gear’s五階預測修正法 ..............23
第三章 模擬薄膜沉積的模型 ..............32
3.1 模擬的模型 ..............32
3.2 初始條件的設定 ..............33
3.3 選用元素的勢能 ..............34
3.4 無因次化 ..............34
3.5 表面粗糙度的計算 ..............35
第四章 薄膜沉積數值的設定 ..............39
4.1數值的設定 ..............39
4.2薄膜沉積模擬流程圖 ..............39
第五章 結果與討論 ..............41
5.1 薄膜表面結構及形貌 ..............41
5.1.1 薄膜成長方式 ..............41
5.1.2 原子擴散能力 ..............41
5.1.3原子覆蓋率及孔洞率 ..............42
5.2 入射能量的效應 ..............49
5.3 基板溫度效應 ..............53
第六章 結論 ..............57
參考文獻 ..............58
Extended Abstract ..............61
簡歷 ..............64



[1]Huawei Chen, Ichiro Hagiwara, Tian Huang and Dawei Zhang, 2005, “Theoretical Study on Thin-Film Formation By Parallel Molecular Dynamics Simulation,” Synthetic Metals 155,652-656.
[2]Yanhong Hu, Susan B. Sinnott, 2002, “Molecular Dynamics Simulation of Thin Film NucleationThrough Molecular Cluster Beam Deposition: Effect ofIncident Angle,” Nuclear Instruments and Methods in Physics Research B195, 329–338.
[3]Zheng-Han Hong, Shun-Fa Hwang*, Te-Hua Fang, 2007, “Critical conditions of epitaxy, mixing and sputtering growth on Cu(100) surface using molecular dynamics,” Computational Materials Science 41, 70-77.
[4]Esmaeil Zaminpayma*, Payman Nayebi, Kavoos Mirabbaszadeh, 2008, “A study about nanocluster deposition of thin-film formation by molecular dynamics simulation,” J Clust Sci 19, 623-629
[5]K. R. Lee, S. P. Kim, Y. C. Chung, M. Sahashi, Y. K. Kim, 2009, “Molecular Dynamics Simulation Study of Deposition and Annealing Behaviors of Al atoms on Cu Surface,” Journal of Applied Physics 105, 114312(1-6).
[6]Jeong Won Kang, Ki Seok Choi, Jin Cheol Kang, EuSeok Kang, Ki RyangByun, Ho Jung Hwang, 2001, “Cluster Deposition Study By Molecular Dynamics Simulation: Al and Cu Cluster,” American Vacuum Society, 1902-1906.
[7]Ho Jang, Seong Jin Kim, Min Hyung Cho, Jang Hyuk Yoon, 2005, “Molecular Dynamics Simulation of Strain Relaxation in Cu Thin Films on Ni(001),” ScriptaMaterialia 52, 1105-1109.
[8]N. Levanov, V. S. Stepanyuk, W. Hergert, O. S. Trushin, K. K. Kokko, 1998, “Molecular Dynamics Simulation of Thin Films Groeth on Cu(001),” Surface Science 400, 54-62.
[9]Suasn B. Sinnott, Yanhong Hu, 2003, “A Molecular Dynamics Study of Thin-Film Formation Via Molecular Cluster Beam Deposition : Effect of Incident Species,” Surface Science 526, 230-242.
[10]S.E. Imamova,A. Atanasov, N.N. Nedialkov, 2005, “Molecular Dynamics Simulation Using Pair and Many Body Interatomic Potentials: Ultrashort Laser Ablation of Fe,” Nuclear Instruments and Methods in Physics Research B 227, 490-498.
[11]T. Kumagai, S. Izumi, S. Hara, S. sakai, 2007, “Development of Bond-Order Potentials That can Reproduce The Elastic Constants and Melting Point of Silicon for Classical Molecular Dynamics Simulation,” Computational Materials Science 39, 457-464.
[12]F. C., V. R., 1993, “Tight-binding Potentials for Transition Metals and Alloys,” The American Physical Society in Physical Review B 48,22-33.
[13]J. Tersoff, 1988, “New Empirical Approach for The Structure And Energy of covalent system,” The American Physical Society in Physical Review B 37, 6991-7000.
[14]J. Tersoff, 1988, “Empirical Interatomic Potential for Silicon With Improved Elastic Properties,” The American Physical Society in Physical Review B 38, 9902-9905.
[15]J. Tersoff, 1989, “Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems,” TheAmerican Physical Society in Physical Review B 38, 5566-5568.

[16]Allen, M. P.,D. J. Tildesley, 1987, Computer Simulation of Liquids,Oxford, Clarendon Press.
[17]Kazumasa Yorizane, Yasunori Yamamura*, 1999, “Molecular Dynamics Studies of Thin Film Growth by Ionized Cluster Beam Deposition,” Computational Materials Science 14, 241-247.
[18]Charles M. Gilmore,*, James A. Sprague, 2002, “Molecular Dynamics Simulation of Defect Formation During Energetic Cu Deposition,” Thin Solid Films 419, 18-26.
[19]J. M. Haile, 1997, Molecular Dynamics Simulation Elementary Methods, Wiley, New York.
[20]C. M. Gilmore, J. A. Sprague, 1996, “Molecular Dynamics Simulationsof Film-Substrate Interface Mixing in The Energetic Deposition of Fcc Mstals,” Thin Solid Films 419, 244-254.
[21]朱清俊,2006,”應用分子動力學研究奈米薄膜沉積之力學行為與性質”,國立成功大學機械工程學系,博士論文。
[22]張勳承,2010,”應用分子動力學於合金團簇沉積製程之研究”, 國立成功大學機械工程學系,博士論文。
[23]N. Miyazaki, Y. shiozaki, 1996, “Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method, ” JSME Series A 39, 606.
[24]朱訓鵬,2002,”分子動力學與平行運算於奈米薄膜沉積模擬之應用”, 國立成功大學機械工程學系,博士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top