|
[1]熊紹珍,2010,“太陽能電池基礎與應用”,科學出版社 [2]M.A. Contreras, B. Egaas, K. Ramanathan, 1999, “Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin film solar cell”, Prog. Photovolt: Res. Applied, 7, pp. 311-316 [3]K. Ramanathan, M.A. Contreras, C.L Perkins, 2003, “Ptoperties of 19.2% efficiency ZnO/CdS/ CuInGaSe2 thin film solar cells”, Prog. Photovolt: Res. Applied, 11, pp. 225-230 [4]I. Repinsl, M.A. Contreras, B. Egaas, 2008, “19.9% efficient ZnO /CdS/CuInGaSe2 solar cell with 81.2% fill factor”, Prog. Photovolt: Res. Applied,16, pp. 235-239 [5]M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, 2012, “Solar cell efficiency tables”, Prog. Photovolt: Res. Applied, 20, pp. 12-20 [6]S. Schleussner, U. Zimmermann , T. Watjen, K. Leifer, M. Edoff, 2011, “Effect of gallium grading in Cu(In,Ga)Se2 solar-cell absorbers produced by multi-stage coevaporation”, Solar Energy Materials & Solar Cells”, 95,pp. 721-726 [7]V.F. Gremenok, E.P. Zaretskaya, V.B. Zalesski, K. Bente, W. Schmitz, R.W. Martin, H. Moller, 2005, “Preparation of Cu(In,Ga)Se2 thin film solar cells by two-stage selenization processes using N2 gas”, Solar Energy Materials & Solar Cells, 89, pp. 129-137 [8]P.J. Sebastian, M.E Calixto, R.N Bhattacharya, Rommel Noufi, 1999, “CIS and CIGS based photovoltaic structures developed from electrodeposited precursors”, Solar Energy Materials & Solar Cells, 59, pp.125-135 [9]R.A. Uhl, E. Y.E. Romanyuk, A.N. Tiwari, 2011, “Thin film Cu(In,Ga)Se2 solar cells processed from solution pastes with polymethyl methacrylate binder”, Thin Solid Films, 519, pp. 7259-7263 [10]Brown B J, 1989, “Chemical spary pyrolysis of copper indium diselenide/cadmium sulfide solar cells”, Stanford University [11]N. Romeo, A. Bosio, S. Mazzamuto, D. Menossi, A. Romeo, 2010, “CIGS thin films prepared by sputtering and selenization by using In2Se3, Ga2Se3 and Cu as sputtering targets”, IEEE, pp. 786-788 [12]J.A. Frantz, R.Y. Bekele, V.Q. Nguyen, J.S. Sanghera, A. Bruce, S.V. Frolov, M. Cyrus , I.D. Aggarwal, 2011, “Cu(In,Ga)Se2 thin films and devices sputtered from a single target without additional selenization”, Thin Solid Films, 519, pp. 7763-7765 [13]G.S. Chen, J.C. Yang, Y.C. Chan, L.C. Yang, W. Huang, 2009, “Another route to fabricate single-phase chalcogenides by post-selenization of Cu–In–G a precursors sputter deposited from a single ternary target”, Solar Energy Materials & Solar Cells, 93, pp. 1351-1355 [14]W. Liu, J.G. Tian, Q. He, F.Y. Li, C.J. Li, Y. Sun, 2011, “Effect of metallic precursors on the thin film thickness and reaction resistances in the selenization process”, Current Applied Physics, 11, pp. 327-330 [15]C.Y. Su, W.H. Ho, HC. Lin, C.Y. Nieh, S.C. Liang, 2011, “The effects of the morphology on the CIGS thin films prepared by CuInGa single precursor” Solar Energy Materials & Solar Cells, 95, pp. 261-263 [16]W. Li, Y. Sun, W. Liu, L. Zhou, 2006, “Fabrication of Cu(In,Ga)Se2 thin films solar cell by selenization process with Se vapor” , Solar Energy, 80, pp. 191-195 [17]R. Caballero, C. Maffiotte, C. Guillén, 2005, “Preparation and characterization of CuIn1-xGaxSe2 thin films obtained by sequential evaporations and different selenization processes”, Thin Solid Films, 474, pp. 70-76 [18]F.O. Adurodija, J. Song, S.D. Kim, S.H. Kwon, S.K. Kim, K.H. Yoon, B.T. Ahn, 1999, “Growth of CuInSe2 thin films by high vapor Se treatment of co-sputtered Cu-In alloy in a graphite container”, Thin Solid Films, 338, pp.13-19 [19]戴寶通,鄭晃忠,2008,,“太陽能電池技術手冊”,台灣電子材料與元件協會 [20]黃惠良,曾百亨,2009,“太陽電池”,五南圖書 [21]U. Malm, J. Malmstrfm, C. Platzer-Bjfrkman, L. Stolt, 2005, “Determination of dominant recombination paths in Cu(In,Ga)Se2 thin-film solar cells with ALD–ZnO buffer layers”, Thin Solid Films, 480, p.p 208-212 [22]U. Rau, A. Jasenek, H.W. Schock, F. Engelhardt, T. Meyer, 2000, “Electronic loss mechanisms in chalcopyrite based heterojunction solar cells”, Thin Solid Films, 361, pp. 298-302 [23]C. Platzer-Bjorkman, J. Lu, J. Kessler, L. Stolt, 2003, “Interface study of CuInSe2/ZnO and Cu(In,Ga)Se2/ZnO devices using ALD ZnO buffer layers”, Thin Solid Films, 431, pp. 321-325 [24]W.K. Metzger, I.L. Repins, M. Romero, P. Dippo, M. Contreras, R. Noufi, D. Levi, 2009, “Recombination kinetics and stability in polycrystalline Cu(In,Ga)Se2 solar cells”, Thin Solid Films, 517, pp. 2360-2364 [25]S.J. Parka, E. Lee, H.S. Jeon, S.J. Ahn, M.K. Oh, B.K. Min, 2011, “A comparative study of solution based CIGS thin film growth on different glass substrates”, Applied Surface Science, 258, pp. 120-125 [26]B.M. BaSol, V.K. Kapur, C.R. Leidholm, A. Minnick and A. Halani, 1994, “Studies on substrates and contacts for CIS films and devices”, IEEE, pp. 148-151 [27]R. Wuerz, A. Eicke, M. Frankenfeld, F. Kessler, M. Powalla , P. Rogin, O. Yazdani-Assl, 2009, “CIGS thin-film solar cells on steel substrates”, Thin Solid Films, 517, pp. 2415-2418 [28]R. Caballero, C.A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, 2009, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates”, Thin Solid Films, 517, pp. 2187-2190 [29]K. Herz, A. Eicke, F. Kessler, R. Wachter, M. Powalla, 2003, “Diffusion barriers for CIGS solar cells on metallic substrates”, Thin Solid Films, 431, pp. 392-397 [30]C.Y. Shi, Y. Sun, Q. He, F.Y. Li, J.C. Zhao, 2009, “Cu(In,Ga)Se2 solar cells on stainless-steel substrates covered with ZnO diffusion barriers”, Solar Energy Materials & Solar Cells, 93, pp. 654-656 [31]K.H. Yoon, S.K. Kim, R.B.V. Chalapathy, J.H. Yun, J.C. Lee and J. Song, 2004, “Characterization of a molybdenum electrode deposited by sputtering and its effect on Cu(In,Ga)Se2 solar cells” , Journal of the Korean Physical Society, 45, pp. 1114-1118 [32]J.H. Scofield, A. Dud, D. Albin, B.L. Ballard, P.K. Predecki, 1995, “Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells”, Thin Solid Films, 260, pp.26-31 [33]Z.H. Li, E.S. Cho, S.J. Kwon, 2011, “Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se2 solar cells”, Applied Surface Science, 257, pp. 9682-9688 [34]S.A. Pethe, E. Takahashi, A. Kaul, N.G. Dhere, 2012, “Effect of sputtering process parameters on film properties of molybdenum back contact”, Solar Energy Materials & Solar Cells, 100, pp.1-5 [35]T. Wada, N. Kohara, S. Nishiwaki, T. Negami, 2001, “Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells”, Thin Solid Films, 387, pp. 118-122 [36]X. Zhu, Z. Zhou, Y. Wanga, L. Zhang, A. Li, F. Huang, 2012, “Determining factor of MoSe2 formation in Cu(In,Ga)Se2 solar Cells”, Solar Energy Materials & Solar Cells, 101, pp. 57-61 [37]N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, T. Wada, 2001, “Electrical properties of the Cu(In,Ga)Se2/MoSe2 /Mo structure”, Solar Energy Materials & Solar Cells, 67, pp. 209-215 [38]D. Abou-Ras, G. Kostorz, D. Bremaud, M. Klin, F.V. Kurdesau, A.N. Tiwari, M. Dfbeli, 2005, “Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells”, Thin Solid Films, 480, pp. 433-438 [39]J.H. Yun, K.H. Kim, M.S. Kim, B.T. Ahn, S.J. Ahn, J.C. Lee, K.H. Yoon, 2007, “Fabrication of CIGS solar cells with a Na-doped Mo layer on a Na-free substrate”, Thin Solid Films, 515, pp. 5876-5879 [40]J.H. Yoon, S. Cho, W.M. Kim, J.K. Park, Y.J. Baik, T.S. Lee, T.Y. Seong, 2011, “Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2solar cells and its effects on Mo film properties and Na diffusivity”, Solar Energy Materials & Solar Cells, 95, pp. 2959-2964 [41]A. Rockett, 2005, “The effect of Na in polycrystalline and epitaxial single crystal CuIn1-xGaxSe2”, Thin Solid Films, 480, pp. 2-7 [42]M. Souilah, A. Lafond, C. Guillot-Deudon, S. Harel, M. Evain, 2010, “Structural investigation of the Cu2Se–In2Se3–Ga2Se3 phase diagram, X-ray photoemission and optical properties of the Cu1-z(In0.5Ga0.5)1+z/3Se2 compounds”, Journal of Solid State Chemistry,183, pp. 2274-2280 [43]E.Q.B. Macabebe, C.J. Sheppard, E.E Dyk 2009, “Device and performance parameters of Cu(In,Ga)(Se,S)2-based solar cells with varying i-ZnO layer thickness”, Physica B, 404, pp. 4466-4469 [44]S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, 2005, “Fabrication of wide-gap Cu(In1-xGax)Se2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness”, Solar Energy Materials & Solar Cells, 87, pp. 541-548 [45]Y. Nagoya, B. Sang, Y. Fujiwara, K. Kushiya, O. Yamase, 2003, “Improved performance of Cu(In,Ga)Se2-based submodules with a stacked structure of ZnO window prepared by sputtering”, Solar Energy Materials & Solar Cells, 75, pp. 163-169 [46]J.C. Lee, K.H. Kang, S. K. Kim, K.H. Yoon, I.J. Park, J. Song, 2000, “RF sputter deposition of the high-quality intrinsicand n-type ZnO window layers for Cu(In,Ga)Se2-based solar cell applications”, Solar Energy Materials & Solar Cells, 64, pp. 185-195 [47]F. Couzinié-Devy, N. Barreau, J. Kessler, 2008, “Dependence of ZnO:Al properties on the substrate to target position in RF sputtering”, Thin Solid Films, 516, pp. 7094-7097 [48]Z.A. Wang, J.B. Chu, J.B. Chu, H.B. Zhu, Z. Sun, Y.W. Chen, S.M. Huang, 2009, “Growth of ZnO:Al films by RF sputtering at room temperature for solar cell applications” , Solid-State Electronics, 53, pp. 1149-1153
|