跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 11:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王承先
研究生(外文):Cheng-Xain Wang
論文名稱:硒薄膜與硒蒸氣硒化銅銦鎵金屬前驅層製備銅銦鎵硒薄膜研究
論文名稱(外文):The Fabrication and Characterization of CIGS Films by Se Film and Se Vapor Selenization of CIG Precursor Film
指導教授:蔡丕椿
指導教授(外文):Pi-Chuen Tsai
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:110
中文關鍵詞:銅銦鎵硒硒化銅銦鎵金屬前驅層
外文關鍵詞:CuInGaSe2SelenizationCu-In-Ga metallic precursor film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:667
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究以硒薄膜層與硒蒸氣硒化銅銦鎵(1:0.5:0.5)金屬前驅層製備銅銦鎵硒薄膜,探討在不同的堆疊結構(Glass/Mo/Se/CIG、Glass/Mo/CIG/Se)與硒化退火參數下對銅銦鎵硒薄膜的影響,並進一步的在退火製程中加入硒氣氛,觀察對硒化後薄膜的影響,最後根據前期的研究成果設計製備低鎵與低氧元素的金屬前驅層進行硒化退火,觀察鎵與氧元素在硒化退火過程中所佔的重要地位。

實驗分析結果中發現薄膜在不同的堆疊方式與退火參數下對薄膜的影響,其中Glass/Mo/CIG/Se結構在較短的擴散處理下會阻礙氧元素的脫離而產生銦氧相,藉由較長的擴散處理可使表層的氧脫離得到較佳的銅銦鎵硒結晶形貌,而在Glass/Mo/Se/CIG結構退火後發現底層硒元素皆往表面偏移現象,並在薄膜表層形成銅銦鎵硒的結晶,而當在Glass/Mo/Se/CIG結構退火在充滿硒氣氛的環境下,分析結果顯示在此條件下會使表面產生富銅的結晶,並可使表面高含量的硒原子朝薄膜底部擴散,使薄膜表面硒原子濃度高於底部,避免了硒原子朝表面偏移。

在改變CIG前驅層鎵與氧含量的分析結果中發現,在降低鎵元素含量的條件下,薄膜內部的氧分子較容易偏移至表面,致使表面銦與氧的氧化相。而製備低氧前驅層對於硒化反應則有很明顯的改善,硒原子的擴散不再受到氧原子的阻礙而使硒化深度明顯增加,達到整層薄膜完全硒化的目的。




In this study, CuInGaSe2 films were prepared by Se film and Se vapor hybrid selenization of Cu-In-Ga metallic precursor film, with structures of glass/Mo/Se/CIG and glass/Mo/CIG/Se. Effects of selenization parameters on the CIGS film properties were investigated. The influences of the selenization with and without Se vapor were also analyzed. According to these results, a low Ga-content and low O-content precursor film was used to evaluate the roles that Ga and O played during the selenization process.

Among the testing samples, the sample with the structure of glass/Mo/CIG/Se showed In2O3 phase due to the obstruction of oxygen out-diffusion from the film when a short selenization time was used. Long selenization duration can reduce the surface oxygen content and thus obtain better crystalline morphology. If selenized without Se vapor, the precursor film with structure of glass/Mo/Se/CIG showed that Se content at the bottom almost totally diffused to top region, and the CIGS crystals were formed only at the surface. Supplement by Se vapor when selenization leads to Cu-rich crystals and high Se concentration on the sample surface layer to avoid absence of Se at the bottom of the sample.

Regarding different Ga- and O-content precursor films, the results showed that oxygen in the low Ga-content precursors significantly moved to surface, and thus leaded to InO3 phase. On the other hand, applying low O-content precursors improved the selenization process, in which Se diffused into the film without obstruction from oxygen, and finally the completely selenized CIGS film could be obtained.


中文摘要................................................i
Abstract...............................................iii
誌謝....................................................v
目錄....................................................vi
表目錄..................................................x
圖目錄..................................................xi
第一章 緒論..............................................1
1.1 前言.................................................1
1.2 CIGS薄膜太陽電池的發展背景[1]........................3
1.3 CIGS薄膜的製程.......................................8
1.3.1 真空濺鍍法製備CIGS薄膜.............................9
1.4 研究動機與目的.......................................11
第二章 太陽能電池原理與文獻回顧..........................13
2.1 太陽能電池原理[19-20]................................13
2.1.1 太陽能電池等效電路.................................15
2.1.2 太陽電池轉換效率...................................16
2.2 太陽電池的種類.......................................18
2.2.1 單晶矽太陽電池簡介.................................20
2.2.2 多晶矽太陽能電池簡介...............................21
2.2.3 非晶矽薄膜太陽能電池簡介...........................21
2.2.4 碲化鎘薄膜太陽能電池概述...........................22
2.3銅銦鎵硒(CIGS)薄膜太陽能電池..........................23
2.3.1銅銦鎵硒薄膜太陽電池的工作原理與複合機制............25
2.3.2 銅銦鎵硒薄膜太陽電池的製程與結構...................26
第三章 實驗規畫與設備...................................36
3.1實驗流程與規劃........................................36
3.1.1實驗流程............................................36
3.1.2實驗設計............................................38
3.1.3實驗材料準備與試片的前處理..........................42
3.1.3.1試片的前處理......................................42
3.1.3.2實驗靶材..........................................43
3.1.3.3硒粉..............................................43
3.2 實驗設備.............................................44
3.2.1 射頻磁控濺鍍系統...................................44
3.2.2 連續式多腔體濺鍍系統...............................45
3.2.3 硒化退火系統.......................................47
3.3 分析儀器.............................................49
3.3.1 場發式電子顯微鏡...................................49
3.3.2 X光繞射分析儀......................................51
3.3.3 霍爾量測儀.........................................52
3.3.4 X光電子能譜儀......................................53
第四章 結果與討論........................................56
4.1不同低溫擴散時間對上層硒薄膜硒化退火的影響............56
4.1.1 材料結構形貌分析...................................56
4.1.2 XRD結晶繞射分析....................................60
4.1.2 XPS成份縱深分析....................................61
4.2高溫退火時間對上層硒薄膜硒化的影響....................62
4.2.1 材料結構形貌分析...................................62
4.2.2 XRD結晶繞射分析....................................66
4.2.3 XPS成份縱深分析....................................67
4.3高溫退火時間對下層硒薄膜硒化的影響....................68
4.3.1 材料結構形貌分析...................................68
4.3.2 XRD結晶繞射分析....................................75
4.3.3 XPS成份縱深分析....................................76
4.4氣體與下層硒薄膜複合式硒化在不同退火時間下的影響......79
4.4.1 材料結構形貌分析...................................79
4.4.2 XRD結晶繞射分析....................................82
4.4.3 XPS成份縱深分析....................................83
4.5低Ga含量前驅層複合式硒化在不同退火時間下的影響........84
4.5.1 材料結構形貌分析...................................84
4.5.2 XRD結晶繞射分析....................................87
4.5.3 XPS成份縱深分析....................................88
4.6低氧前驅層在不同結構下硒化退火之影響..................89
4.6.1 Mo/CIG/Se結構下硒化退火之影響......................89
4.6.2 Mo/Se(600 nm)/CIG結構下硒化退火之影響..............92
4.6.3 Mo/Se(600 nm)/CIG結構以複合式硒化退火之影響........94
4.6.4 Mo/Se(600 nm)/CIG/Se(1.2 μm)結構下硒化退火之影響..96
4.7 Hall電性量測.........................................98
第五章 結論..............................................99
參考文獻................................................101
Extended Abstract.......................................107
簡歷(CV)................................................110



[1]熊紹珍,2010,“太陽能電池基礎與應用”,科學出版社
[2]M.A. Contreras, B. Egaas, K. Ramanathan, 1999, “Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin film solar cell”, Prog. Photovolt: Res. Applied, 7, pp. 311-316
[3]K. Ramanathan, M.A. Contreras, C.L Perkins, 2003, “Ptoperties of 19.2% efficiency ZnO/CdS/ CuInGaSe2 thin film solar cells”, Prog. Photovolt: Res. Applied, 11, pp. 225-230
[4]I. Repinsl, M.A. Contreras, B. Egaas, 2008, “19.9% efficient ZnO /CdS/CuInGaSe2 solar cell with 81.2% fill factor”, Prog. Photovolt: Res. Applied,16, pp. 235-239
[5]M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, 2012, “Solar cell efficiency tables”, Prog. Photovolt: Res. Applied, 20, pp. 12-20
[6]S. Schleussner, U. Zimmermann , T. Watjen, K. Leifer, M. Edoff, 2011, “Effect of gallium grading in Cu(In,Ga)Se2 solar-cell absorbers produced by multi-stage coevaporation”, Solar Energy Materials & Solar Cells”, 95,pp. 721-726
[7]V.F. Gremenok, E.P. Zaretskaya, V.B. Zalesski, K. Bente, W. Schmitz, R.W. Martin, H. Moller, 2005, “Preparation of Cu(In,Ga)Se2 thin film solar cells by two-stage selenization processes using N2 gas”, Solar Energy Materials & Solar Cells, 89, pp. 129-137
[8]P.J. Sebastian, M.E Calixto, R.N Bhattacharya, Rommel Noufi, 1999, “CIS and CIGS based photovoltaic structures developed from electrodeposited precursors”, Solar Energy Materials & Solar Cells, 59, pp.125-135
[9]R.A. Uhl, E. Y.E. Romanyuk, A.N. Tiwari, 2011, “Thin film Cu(In,Ga)Se2 solar cells processed from solution pastes with polymethyl methacrylate binder”, Thin Solid Films, 519, pp. 7259-7263
[10]Brown B J, 1989, “Chemical spary pyrolysis of copper indium diselenide/cadmium sulfide solar cells”, Stanford University
[11]N. Romeo, A. Bosio, S. Mazzamuto, D. Menossi, A. Romeo, 2010, “CIGS thin films prepared by sputtering and selenization by using In2Se3, Ga2Se3 and Cu as sputtering targets”, IEEE, pp. 786-788
[12]J.A. Frantz, R.Y. Bekele, V.Q. Nguyen, J.S. Sanghera, A. Bruce, S.V. Frolov, M. Cyrus , I.D. Aggarwal, 2011, “Cu(In,Ga)Se2 thin films and devices sputtered from a single target without additional selenization”, Thin Solid Films, 519, pp. 7763-7765
[13]G.S. Chen, J.C. Yang, Y.C. Chan, L.C. Yang, W. Huang, 2009, “Another route to fabricate single-phase chalcogenides by post-selenization of Cu–In–G a precursors sputter deposited from a single ternary target”, Solar Energy Materials & Solar Cells, 93, pp. 1351-1355
[14]W. Liu, J.G. Tian, Q. He, F.Y. Li, C.J. Li, Y. Sun, 2011, “Effect of metallic precursors on the thin film thickness and reaction resistances in the selenization process”, Current Applied Physics, 11, pp. 327-330
[15]C.Y. Su, W.H. Ho, HC. Lin, C.Y. Nieh, S.C. Liang, 2011, “The effects of the morphology on the CIGS thin films prepared by CuInGa single precursor” Solar Energy Materials & Solar Cells, 95, pp. 261-263
[16]W. Li, Y. Sun, W. Liu, L. Zhou, 2006, “Fabrication of Cu(In,Ga)Se2 thin films solar cell by selenization process with Se vapor” , Solar Energy, 80, pp. 191-195
[17]R. Caballero, C. Maffiotte, C. Guillén, 2005, “Preparation and characterization of CuIn1-xGaxSe2 thin films obtained by sequential evaporations and different selenization processes”, Thin Solid Films, 474, pp. 70-76
[18]F.O. Adurodija, J. Song, S.D. Kim, S.H. Kwon, S.K. Kim, K.H. Yoon, B.T. Ahn, 1999, “Growth of CuInSe2 thin films by high vapor Se treatment of co-sputtered Cu-In alloy in a graphite container”, Thin Solid Films, 338, pp.13-19
[19]戴寶通,鄭晃忠,2008,,“太陽能電池技術手冊”,台灣電子材料與元件協會
[20]黃惠良,曾百亨,2009,“太陽電池”,五南圖書
[21]U. Malm, J. Malmstrfm, C. Platzer-Bjfrkman, L. Stolt, 2005, “Determination of dominant recombination paths in Cu(In,Ga)Se2 thin-film solar cells with ALD–ZnO buffer layers”, Thin Solid Films, 480, p.p 208-212
[22]U. Rau, A. Jasenek, H.W. Schock, F. Engelhardt, T. Meyer, 2000, “Electronic loss mechanisms in chalcopyrite based heterojunction solar cells”, Thin Solid Films, 361, pp. 298-302
[23]C. Platzer-Bjorkman, J. Lu, J. Kessler, L. Stolt, 2003, “Interface study of CuInSe2/ZnO and Cu(In,Ga)Se2/ZnO devices using ALD ZnO buffer layers”, Thin Solid Films, 431, pp. 321-325
[24]W.K. Metzger, I.L. Repins, M. Romero, P. Dippo, M. Contreras, R. Noufi, D. Levi, 2009, “Recombination kinetics and stability in polycrystalline Cu(In,Ga)Se2 solar cells”, Thin Solid Films, 517, pp. 2360-2364
[25]S.J. Parka, E. Lee, H.S. Jeon, S.J. Ahn, M.K. Oh, B.K. Min, 2011, “A comparative study of solution based CIGS thin film growth on different glass substrates”, Applied Surface Science, 258, pp. 120-125
[26]B.M. BaSol, V.K. Kapur, C.R. Leidholm, A. Minnick and A. Halani, 1994, “Studies on substrates and contacts for CIS films and devices”, IEEE, pp. 148-151
[27]R. Wuerz, A. Eicke, M. Frankenfeld, F. Kessler, M. Powalla , P. Rogin, O. Yazdani-Assl, 2009, “CIGS thin-film solar cells on steel substrates”, Thin Solid Films, 517, pp. 2415-2418
[28]R. Caballero, C.A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, 2009, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates”, Thin Solid Films, 517, pp. 2187-2190
[29]K. Herz, A. Eicke, F. Kessler, R. Wachter, M. Powalla, 2003, “Diffusion barriers for CIGS solar cells on metallic substrates”, Thin Solid Films, 431, pp. 392-397
[30]C.Y. Shi, Y. Sun, Q. He, F.Y. Li, J.C. Zhao, 2009, “Cu(In,Ga)Se2 solar cells on stainless-steel substrates covered with ZnO diffusion barriers”, Solar Energy Materials & Solar Cells, 93, pp. 654-656
[31]K.H. Yoon, S.K. Kim, R.B.V. Chalapathy, J.H. Yun, J.C. Lee and J. Song, 2004, “Characterization of a molybdenum electrode deposited by sputtering and its effect on Cu(In,Ga)Se2 solar cells” , Journal of the Korean Physical Society, 45, pp. 1114-1118
[32]J.H. Scofield, A. Dud, D. Albin, B.L. Ballard, P.K. Predecki, 1995, “Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells”, Thin Solid Films, 260, pp.26-31
[33]Z.H. Li, E.S. Cho, S.J. Kwon, 2011, “Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se2 solar cells”, Applied Surface Science, 257, pp. 9682-9688
[34]S.A. Pethe, E. Takahashi, A. Kaul, N.G. Dhere, 2012, “Effect of sputtering process parameters on film properties of molybdenum back contact”, Solar Energy Materials & Solar Cells, 100, pp.1-5
[35]T. Wada, N. Kohara, S. Nishiwaki, T. Negami, 2001, “Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells”, Thin Solid Films, 387, pp. 118-122
[36]X. Zhu, Z. Zhou, Y. Wanga, L. Zhang, A. Li, F. Huang, 2012, “Determining factor of MoSe2 formation in Cu(In,Ga)Se2 solar Cells”, Solar Energy Materials & Solar Cells, 101, pp. 57-61
[37]N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, T. Wada, 2001, “Electrical properties of the Cu(In,Ga)Se2/MoSe2 /Mo structure”, Solar Energy Materials & Solar Cells, 67, pp. 209-215
[38]D. Abou-Ras, G. Kostorz, D. Bremaud, M. Klin, F.V. Kurdesau, A.N. Tiwari, M. Dfbeli, 2005, “Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells”, Thin Solid Films, 480, pp. 433-438
[39]J.H. Yun, K.H. Kim, M.S. Kim, B.T. Ahn, S.J. Ahn, J.C. Lee, K.H. Yoon, 2007, “Fabrication of CIGS solar cells with a Na-doped Mo layer on a Na-free substrate”, Thin Solid Films, 515, pp. 5876-5879
[40]J.H. Yoon, S. Cho, W.M. Kim, J.K. Park, Y.J. Baik, T.S. Lee, T.Y. Seong, 2011, “Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2solar cells and its effects on Mo film properties and Na diffusivity”, Solar Energy Materials & Solar Cells, 95, pp. 2959-2964
[41]A. Rockett, 2005, “The effect of Na in polycrystalline and epitaxial single crystal CuIn1-xGaxSe2”, Thin Solid Films, 480, pp. 2-7
[42]M. Souilah, A. Lafond, C. Guillot-Deudon, S. Harel, M. Evain, 2010, “Structural investigation of the Cu2Se–In2Se3–Ga2Se3 phase diagram, X-ray photoemission and optical properties of the Cu1-z(In0.5Ga0.5)1+z/3Se2 compounds”, Journal of Solid State Chemistry,183, pp. 2274-2280
[43]E.Q.B. Macabebe, C.J. Sheppard, E.E Dyk 2009, “Device and performance parameters of Cu(In,Ga)(Se,S)2-based solar cells with varying i-ZnO layer thickness”, Physica B, 404, pp. 4466-4469
[44]S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, 2005, “Fabrication of wide-gap Cu(In1-xGax)Se2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness”, Solar Energy Materials & Solar Cells, 87, pp. 541-548
[45]Y. Nagoya, B. Sang, Y. Fujiwara, K. Kushiya, O. Yamase, 2003, “Improved performance of Cu(In,Ga)Se2-based submodules with a stacked structure of ZnO window prepared by sputtering”, Solar Energy Materials & Solar Cells, 75, pp. 163-169
[46]J.C. Lee, K.H. Kang, S. K. Kim, K.H. Yoon, I.J. Park, J. Song, 2000, “RF sputter deposition of the high-quality intrinsicand n-type ZnO window layers for Cu(In,Ga)Se2-based solar cell applications”, Solar Energy Materials & Solar Cells, 64, pp. 185-195
[47]F. Couzinié-Devy, N. Barreau, J. Kessler, 2008, “Dependence of ZnO:Al properties on the substrate to target position in RF sputtering”, Thin Solid Films, 516, pp. 7094-7097
[48]Z.A. Wang, J.B. Chu, J.B. Chu, H.B. Zhu, Z. Sun, Y.W. Chen, S.M. Huang, 2009, “Growth of ZnO:Al films by RF sputtering at room temperature for solar cell applications” , Solid-State Electronics, 53, pp. 1149-1153


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top