跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 10:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭育彰
研究生(外文):Yu-Chang Peng
論文名稱:微量元素鎂對錫銅系無鉛銲錫合金各種性質之影響
論文名稱(外文):Effect of Minor Mg on the Various Properties of Sn-Cu Lead-Free Solder Alloys
指導教授:黃和悅
指導教授(外文):Her-Yueh Huang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:90
中文關鍵詞:無鉛銲錫鎂元素介金屬化合物顯微結構熱儲存
外文關鍵詞:lead-free solderMg elementintermetallic compoundmicrostructurethermal storage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要為探討添加微量Mg元素對Sn-0.7Cu無鉛銲錫合金熔點、顯微組織、機械性質及接合性能方面之影響。經由示差掃描熱量分析中可得知添加Mg元素後,Sn-0.7Cu合金之熔點降低約為227.88℃。顯微組織分析結果顯示Sn-0.7Cu與Sn-0.7Cu-0.01Mg銲錫合金為β-Sn+網狀的β-Sn+Cu6Sn5共晶的組成,而Sn-3Ag-0.5Cu合金為β-Sn+網狀的β-Sn+Ag3Sn+Cu6Sn5共晶的組成。在拉伸性能方面可以得知Mg元素的添加會降低Sn-0.7Cu合金之強度,但其伸長率有明顯的提升;此外,添加微量Mg元素可以提升合金之潤濕性能。接合性能實驗結果可發現,銲錫合金之界面反應層會隨儲存時間增加而變厚,且界面反應層之組織均為Cu6Sn5介金屬化合物;隨高溫熱儲存時間的增加,銲點強度則隨之下降,且觀察其破斷面發現,造成銲點破斷位置將由銲錫移至銲錫與界面反應層處。

The research was focused on the effects of Mg additions to Sn-0.7Cu lead-free solder on the melting point, microstructure, mechanical property, and joint performance. Results of differential scanning calorimeter analysis showed that alloying of Mg to Sn-0.7Cu decreased the melting temperature slightly where the melting temperature was 227.88 °C. The microstructures of Sn-0.7Cu and Sn-0.7Cu-0.01Mg solders could be clearly divided into two regions, it was identified that the dendrite arm was primary β-Sn phase while the interdendritic eutectic was the Cu6Sn5/β-Sn eutectic phase. However, the eutectic regions of ternary eutectic Sn-3Ag-0.5Cu solder were a mixture of fine intermetallic particles of Cu6Sn5 and Ag3Sn in the β-Sn matrix. The wetting property was improved by addition of Mg element into the Sn-0.7Cu solder alloy. The addition of Mg enhanced the elongation of the solders but decreased their tensile strength. The intermetallic compounds thickness gradually increased with the increase of aging time. The tensile strength of the joints decreased with the increase of aging time while the fracture site was moved from solder alloy to intermetallics interface.

目錄
摘要..................................................i
Abstract.............................................ii
誌謝..................................................iv
目錄..................................................v
表目錄................................................vii
圖目錄................................................viii
第一章 緒論.............................................1
第二章 文獻回顧..........................................3
2.1 電子構裝技術.........................................3
2.2 銲接................................................8
2.3 無鉛銲錫合金的開發....................................12
2.4 無鉛銲錫合金的性質需求.................................14
2.5 無鉛銲錫合金系統......................................27
2.6 無鉛銲錫的可銲錫性與助銲劑之使用.........................32
2.7 電子構裝之可靠度分析...................................34
2.8 微量Mg元素添加對無鉛銲錫合金的影響.......................39
第三章 實驗流程與方法......................................42
3.1實驗流程..............................................42
3.2示差掃描量熱分析.......................................44
3.3銲錫合金顯微組織觀察與成分分析............................45
3.4拉伸試驗..............................................46
3.5潤濕性試驗............................................48
3.6銲接試棒製備...........................................49
3.7 高溫儲存試驗..........................................50
3.8 銲點界面顯微組織觀察與分析..............................51
3.9 接合強度測試及破斷面分析................................52
第四章 實驗結果與討論......................................53
4.1 熱性質分析...........................................53
4.2 合金顯微組織與成分分析.................................54
4.3 拉伸性質.............................................57
4.4拉伸破斷面分析.........................................60
4.5潤濕特性分析...........................................62
4.6接合性能之界面組織分析...................................65
4.7接合性能之拉伸性質分析...................................70
第五章 結論...............................................77
參考文獻.................................................79
Extended Abstract.......................................83
簡歷(CV).................................................90 

表目錄
表2.1 預敷銲料的各種方法及優缺點.............................11
表2.2 無鉛銲錫合金成份熔點表................................16
表2.2 無鉛銲錫合金成分熔點表(續).............................17
表2.3 多種無鉛銲錫與Cu基材間潤濕角之比較......................19
表2.4 無鉛銲錫合金及導線架材料之基本物理性質...................21
表2.5為一般銲錫及導線架材料之室溫電阻係數值....................22
表2.6為目前常見銲錫用金屬的成本..............................26
表2.7為目前常見幾種無鉛銲錫組成的成本.........................27
表2.8為目前常見之助銲劑種類及其特性與應用......................34
表2.9 各種可靠度試驗條件及目的...............................37
表2.9 各種可靠度試驗條件及目的(續)...........................38
表2.10 不同比例Mg元素添加對合金熔點的影響.....................41
表4.1 三種銲錫合金之拉伸機械性質.............................58

圖目錄
圖2.1 電子構裝的功能.......................................3
圖2.2 電子層級的區分.......................................4
圖2.3 打線接合接合方式.....................................5
圖2.4 覆晶微互連用凸塊的示意圖...............................5
圖2.5 捲帶式自動接合方式....................................6
圖2.6 (a)表面黏著技術型(b)引腳插入型示意圖....................7
圖2.7 SMD雙面整體迴銲的技術過程.............................10
圖2.8 波銲法.............................................12
圖2.9 Sn-Pb合金的相圖.....................................14
圖2.10為潤濕反應的示意圖...................................17
圖2.11 介金屬化合物有助於阻礙裂縫生長示意圖....................29
圖2.12 故障的函數圖形......................................35
圖2.13 Sn-4Ag-0.5Cu-5Mg合金的顯微組織SEM圖.................41
圖3.1 實驗流程示意圖.......................................43
圖3.2 示差掃描量熱分析.....................................45
圖3.3 為場發射掃描式電子顯微鏡...............................46
圖3.4 合金拉伸試棒尺寸.....................................47
圖3.5 澆鑄完成後試片.......................................47
圖3.6 拉伸試驗機..........................................48
圖3.7潤濕性實驗示意圖......................................48
圖3.8 銲接試棒尺寸示意圖...................................50
圖3.9 Cu基材銲接試棒完成後之實體照片.........................50
圖3.10 為熱風循環烘箱......................................51
圖3.11 微負荷拉伸試驗機....................................52
圖4.1 三種銲錫合金之DSC分析曲線比較..........................54
圖4.2 Sn-0.7Cu合金的顯微組織圖.............................55
圖4.3 Sn-0.7Cu-0.01Mg合金的顯微組織圖......................55
圖4.4 Sn-0.7Cu-0.01Mg合金成分分佈情形......................56
圖4.5 Sn-3Ag-0.5Cu合金的顯微組織圖.........................57
圖4.6 三種銲錫合金之拉伸機械性質平均值比較.....................59
圖4.7 三種合金拉伸曲線圖...................................59
圖4.8 Sn-0.7Cu合金之拉伸破斷面SEM圖........................61
圖4.9 Sn-0.7Cu-0.01Mg合金之拉伸破斷面的SEM圖................61
圖4.10 Sn-3Ag-0.5Cu合金之拉伸破斷面的SEM圖..................61
圖4.11 銲錫合金之接觸角大小.................................63
圖4.12 銲錫合金之鋪展面積大小...............................63
圖4.13 Sn-0.7Cu合金之潤濕情形 (a)鋪展面積 (b)接觸角..........64
圖4.14 Sn-0.7Cu-0.01Mg合金之潤濕情形 (a)鋪展面積 (b)接觸角...64
圖4.15 Sn-3Ag-0.5Cu合金之潤濕情形 (a)鋪展面積 (b)接觸角......64
圖4.16 Sn-0.7Cu銲點經150℃高溫儲存後之SEM圖.................66
圖4.17 Sn-0.7Cu-0.01Mg銲點經150℃高溫儲存後之SEM圖..........68
圖4.18 Sn-3Ag-0.5Cu銲點經150℃高溫儲存後之SEM圖.............69
圖4.19 界面反應層厚度與高溫儲存時間關係圖.....................70
圖4.20 三種銲錫合金銲點之平均強度比較........................73
圖4.21 三種銲錫合金銲點強度與高溫儲存時間關係..................73
圖4.22 Sn-0.7Cu銲點經150℃高溫儲存拉伸斷裂SEM圖..............74
圖4.23 Sn-0.7Cu-0.01Mg銲點經150℃高溫儲存拉伸斷裂SEM圖.......75
圖4.24 Sn-3Ag-0.5Cu銲點經150℃高溫儲存拉伸斷裂SEM圖..........76



[1]E. P. Wood, K. L. Nimmo, “In Search of New Lead-Free Electronic Solders”, Journal of Electronic Materials, Vol. 23, p. 709-713, 1994.
[2]陳信文等編著,電子構裝技術與材料,第二版,台北縣,高
立圖書有限公司,民國九十四年。
[3]Lu. Sheng,Wei. Chenggang,”Effect of Mg on the Microstructure and Properties of Sn-Ag-Cu Lead-free Solder”, 6th International Conference on Electronic Packaging Technology, 2005.
[4]鍾文仁,陳佑任,IC封裝製程與CAE應用,第三版,台北縣土城市,全華圖書股份有限公司,民國九十九年十一月。
[5]田民波編著,半導體電子元件構裝技術,初版,台北市,五南圖書出版股份有限公司,民國九十四年十月。
[6]陳力俊主編,微電子材料與製程,初版,上海市,復旦大學出版社,九十四年三月。
[7]福岡義孝,陳信文,王姝雯,電子構裝技術,初版,台北縣,普林斯頓國際有限公司,民國九十四年。
[8]黃育智,楊青峰,陳信文,「軟銲」,科學發展,416期,58~63頁,民國九十六年八月。
[9]H.Baker, ASM Handbook v.3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992.
[10]M. Abtew, G. Selvaduray, “Lead-free Solders in Microelectronics”, Materials Science and Engineering, Vol. 27, p. 95-141, 2000.
[11]D.R. Frear, J.R. Michael, P.F. Hlava, “Analysis of the Reaction Between 60Sn-40Pb Solder with a Pb-Pt-Ag-Cu-Au Alloy”, Journal of Electronic Materials, Vol. 22, No.2, 1993.
[12]J. Glazer, “Metallurgy of Low Temperature Pb-Free Solders for Electronic Assembly”, International Materials Reviews, Vol. 40, p. 65-93, 1995.
[13]陳信文等編譯,微系統構裝基礎原理,初版,台北市,高立圖書有限公司,民國九十一年十二月。
[14]John H.L. Pang, T.H. Low, B.S. Xiong, X. Luhua, and C.C. Neo, “Thermal Cycling Aging Effects on Sn-Ag-Cu solder Joint Microstructure, IMC and Strength”, Thin Solid Films, Vol.462-463, p. 370-375, 2004.
[15]邱碧秀編著,微系統封裝原理與技術,初版,台中市,滄海書局,民國九十四年一月。
[16]E.P. Lopez, P.T. Vianco, J.A. Rejent, “Solderability Testing of Sn-Ag-XCu Pb-Free Solders on Copper and Au-Ni-Plated Kovar Substrates“, Journal of Electronic Materials, Vol. 34, No. 3, p.299-310, 2005.
[17]K.S. Kim, S.H. Huh, K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn–Ag–Cu alloys”, Materials Science and Engineering, A333, p.106-114, 2002.
[18]G.Y. Li, X.Q. Shi, “Effects of bismuth on growth of intermetallic compounds in Sn-Ag-Cu Pb-free solder joints”, Transactions of Nonferrous Metals Societyof China, 16, p. s739-s743, 2006.
[19]A. Zribi, A.Clark, L.Zavalij, P. Borgesen, E.J. Cotts, “The Growth of Intermetallic Compounds at Sn-Ag-Cu Solder/Cu and Sn-Ag-Cu Solder/Ni Interfaces and the Associated Evolution of the Solder Microstructure”, Journal of Electronic Materiais, Vol. 30, No. 6, 2001.
[20]N.Tamura, R.Ohshita, M.Fujimoto, S.Fujitani, M.Kamino, I.Yonezu, “Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes”, Journal of Power Sources, Vol.107, No.1, p.48-55, October 2002.
[21]T.E. Ashram, R.M. Shalaby, “Effect of Rapid Solidification and Small Additions of Zn and Bi on the Structure and Properties of Sn-Cu Eutectic Alloy”, Journal of Electronic Materials, Vol. 34, No. 2, p.212-215, 2005.
[22]S. Amore, E. Ricci, G. Borzone, R. Novakovic, “Wetting behaviour of lead-free Sn-based alloys on Cu and Ni substrates”, Materials Science and Engineering, A 495, p. 108-112, 2008.
[23]S. Amore, E. Ricci, T. Lanata, R. Novakovic, “Surface tension and wetting behaviour of molten Cu–Sn alloys”, Journal of Alloys and Compounds , Vol .452, p.161-166, 2008.
[24]D.Q. Yu, H.P. Xie, L. Wang, “Investigation of interfacial microstructure and wetting property of newly developed Sn–Zn–Cu solders with Cu substrate”, Journal of Alloys and Compounds, Vol.385, p. 119-125, 2004.
[25]Y.S. Kim, K.S. Kim, C.W. Hwang, K. Suganuma, “Effect of composition and cooling rate on microstructure and tensile properties of Sn-Zn-Bi alloys”, Journal of Alloys and Compounds, Vol.352, p. 237-245, 2003.
[26]H.W. Miao, J.G. Duh, “Microstructure evolution in Sn-Bi and Sn-Bi-Cu solder joints under thermal aging”, Materials Chemistry and Physics , Vol.71, p. 255-271, 2001.
[27]A. Sharif, Y.C. Chan, “Effect of indium addition in Sn-rich solder on
the dissolution of Cu metallization”, Journal of Alloys and Compounds , Vol. 390 , p. 67-73, 2005.
[28]E.E.M. Noor, N.M. Sharif, C.K. Yew, T. Ariga, A.B. Ismail, Z. Hussain, “Wettability and strength of In-Bi-Sn lead-free solder alloy on copper substrate”, Journal of Alloys and Compounds, Vol. 507, p. 290-296, 2010.
[29]D.G. Ivey, “Microstructural Characterization of Au/Sn Solder for
Packaging in Optoelectronic Applications”, Micron, Vol. 29, No. 4, p. 281-287, 1998.
[30]劉力彰,「鎂添加對無鉛銲錫性質影響及其應用於陶瓷接合研究」,國立雲林科技大學,碩士論文,民國九十六年。
[31]黃偉嘉,「鎂對無鉛銲錫界面反應與微結構影響之研究」,國立雲林科技大學,碩士論文,民國九十九年。
[32]H. Nishikaw, A. Komatsu, T. Takemoto, “Morphology and Pull Strength of Sn-Ag(-Co) Solder Joint”, Journal of Electronic Materials, Vol. 36, No. 9, p. 1137-1143, 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top