(3.231.166.56) 您好!臺灣時間:2021/03/08 11:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇信彰
研究生(外文):Sin-Jhang Su
論文名稱:可調仰角葉片應用於垂直軸風力機性能提升之研究
論文名稱(外文):Application of Variable Blade Pitch Control on Improving the Performance of Vertical Axis Wind Turbine
指導教授:鄭仁杰鄭仁杰引用關係
指導教授(外文):Jen-Chieh Cheng
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:航空與電子科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:69
中文關鍵詞:垂直軸風力機葉片仰角控制非穩態空氣動力流場動態失速數值模擬
外文關鍵詞:VAWTblade pitch controlunsteady aerodynamicsdynamic stallnumerical simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:700
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
垂直軸風力機具有較水平軸風力機不受風向轉變影響、架設容易與噪音小等優點,且可安裝於市區、市郊的建築使用,在提倡綠色能源於住宅生活的前提下,垂直軸式風力機成為極具發展潛力的項目。本文以數值模擬方式探討垂直軸風機葉片的氣動力學現象,深入瞭解風力機葉片的動態空氣動力流場特性,藉此設計規劃葉片仰角的控制方法,以達成提升性能的目標。
本文首先探討單葉片風機的非定常空氣動力特性,選用NACA 0015翼剖面及弦長為9cm葉片,風力機旋轉半徑為45 cm,自由流風速為7m/s及尖速比為2.5的條件下,分析葉片切線力係數隨風機轉動幅角變化的原因,以了解葉片在轉動的過程中,其流場對氣動力性能的影響。並依據流場分析結果,設計多型固定式葉片俯仰角與可調俯仰角葉片的葉片仰角的控制模式。結果顯示,葉片仰角的改變對垂直風機流場結構有明顯的影響,藉由葉片臨界失速時減小葉片的攻角,可以有效降低負轉矩的區域。在所有探討的模式中,最高可以提升平均切線推力係數達8.18%。
本文接著進行三葉片垂直風力機氣動力性能特性探討,首先分析風機葉片設計參數對性能的影響,設計的參數包括葉片的厚度,葉片的弦長與葉片弧度的影響;並依據單葉片風機分析結果規劃多種固定式葉片俯仰角與可調俯仰角葉片控制模式以提高風機之效能。結果顯示,在適當的葉片厚度時,能提高低尖速比時的平均扭力係數;在翼片弧度的影響部分,結果顯示有弧度的葉片會降低其最大平均扭力係數,但是具有適當弧度的葉片則有利於風機的自我啟動;在翼片弦長影響的部分,當葉片的弦長越長時,其平均扭力係數會越低,但平均扭力則呈增加趨勢,且會讓最大平均扭力發生的位置往低尖速比移動。在仰角控制方面,結果顯示,仰角規劃模式與翼尖速度比有關,適當的葉片仰角模式,能夠有效降低負轉矩區域,減少風力機的振動,並且能夠提升平均扭力係數進而增加風能擷取效率,提高風力機的發電效率。固定仰角部分在所有探討的模式中,最高可以提升平均扭力係數達243.16%。可變仰角部分在所有探討的模式中,最高可以提升平均扭力係數達486.06%。

In viewing that the Vertical Axis Wind Turbines (VAWT) have the advantages over the Horizontal Axis Wind Turbine (HAWT) in insensitive to changing wind directions, low noise and easy installation for buildings in urban and suburban areas, they are being favorably considered for current and future green living environment. On the other hand, the VAWTs are suffered from the inherent problems of no self-start, lower efficiency compared to HAWT, and structural vibration. These problems enlighten that more research efforts are needed, in order to improve the performance of the current commercial VAWT products. This study is intended to improve the performance a VAWT by controlling the pitch angles of the turbine blades while rotating.
A single blade wind turbine simulation is performed firstly to investigate the unsteady aerodynamic characteristics and the relation between the tangent force corresponded to rotating angle. The NACA 0015 airfoil is chosen as the section of the rotor blade with chord length 9cm and the radius of the wind turbine is 45cm. The wind speed and tip speed ratio are 7m/s and 2.5. Several fixed and variable pitch angle models are applied to investigate the unsteady flow field of the wind turbine by the methods of computation fluid dynamics. Results show that these blade pitch control models reduced effectively the negative torque regime as well as increase the tangent force of the turbine blade about 8.18% comparing with the without pitch control model.
A three blades model is proceeded to study the aerodynamic characteristics of the vertical axis wind turbine. The effects of turbine performance are carried out with varying design parameters including thickness, chord length and camber. Results show that, the average torque coefficient is increased at lower tip speed ratio for the blades of proper thickness. The camber airfoils have the potential to self-start; however, the average torque coefficient shows a reduction in peak efficiencies. The longer the chord length of the blade, the average torque coefficient is reduced. However the average torque is increased. And the point of maximum average torque occurs at lower tip speed ratio. For the pitch control consideration, the models of pitch control are related to tip speed ratio. An appropriate pitch control model can effectively decrease the range of negative torque and the vibration of the wind turbine. The average torque coefficient as well as the energy capture efficiency can be improved. Therefore, the efficiency of the wind turbines in power generation will be enhanced. The efficiency can be raised 243.16% with fixed pitch control. And the efficiency can be enhanced to 486.06% with variable pitch control.

中文摘要.............................................i
Abstract...........................................iii
誌謝.................................................v
目錄................................................vi
表目錄..............................................ix
圖目錄...............................................x
符號說明...........................................xiv
第一章 緒論..........................................1
1.1 研究動機.........................................1
1.2 研究目的.........................................3
1.3 參考文獻.........................................4
第二章 分析..........................................7
2.1 物理模型.........................................7
2.2 幾何分析.........................................7
2.3 統御方程式.......................................8
2.4 紊流模型.........................................9
2.5 邊界條件........................................11
2.6 參數定義........................................11
第三章 數值方法及驗證...............................13
3.1 簡述............................................13
3.2 滑動網格(sliding mesh)..........................13
3.3 使用者自訂函數(UDF).............................14
3.4 網格系統........................................16
3.5 程式驗證........................................17
3.5.1 網格疏密度的測試..............................17
3.5.2 Time step的測試...............................18
3.5.3 單葉片風機程式驗證............................18
3.5.4 三葉片風機程式驗證............................19
第四章 結果與討論...................................20
4.1 可調式仰角葉片應用於單葉片風機上................20
4.1.1 單葉片風機之流場分析..........................20
4.1.2 單葉片固定式仰角風機之性能分析................21
4.1.3 單葉片可調式俯仰角風機之性能分析..............22
4.1.3.1 單葉片風機可調式仰角葉片控制方法一..........22
4.1.3.2 單葉片風機可調式仰角葉片控制方法二..........24
4.2 可調式仰角葉片應用於三葉片風機上................25
4.2.1 三葉片風機之流場分析..........................25
4.2.2 尖速比對三葉片風機性能的影響..................26
4.2.3 葉片厚度對三葉片風機性能的影響................27
4.2.4 葉片弧度對三葉片風機性能的影響................28
4.2.5 葉片翼弦長對三葉片風機性能的影響..............29
4.2.6 三葉片固定式仰角風機之性能分析................30
4.2.7 三葉片可調式俯仰角風機之性能分析..............32
第五章 結論與未來展望...............................35
5.1 結論............................................35
5.2 未來展望........................................37
參考文獻............................................62
Extended Abstract...................................65
簡歷................................................69

[1] R. Chinchilla, S. Guccione and J. Tillman, Wind Power Technologies: A Need for Research and Development in Improving VAWT''s Airfoil Characteristics, Journal of Industrial Technology, Vol. 27, No. 1, 2011.
[2] R. Howell, N. Qin, J. Edwards and N. Durrani, Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine, Renewable Energy, Vol. 35, pp. 412-422, 2010.
[3] O. Guerri, A. Sakout and K. Bouhadef, Simulations of the Fluid Flow around a rotating Vertical Axis Wind Turbine, Wind Engineering, Vol. 31, No. 3, pp. 149-163, 2007.
[4] H. Beri and Y. Yao, Effect of Camber Airfoil on Self Starting of Vertical Axis Wind Turbine, Journal of Environmental Science and Technology, Vol. 4, No. 3, pp. 302-312, 2011.
[5] Y. Li, K. Tagawa and W. Liu, Performance effects of attachment on blade on a straight-bladed vertical axis wind turbine, Current Applied Physics, Vol. 10, pp. 335-338, 2010.
[6] N. Fujisawa and S. Shibuya, Observations of dynamic stall on Darrieus wind turbine blades, Journal of Wind Engineering and Industrial Aerodynamic, Vol. 89, pp. 201-214, 2001.
[7] S. A. Ahmadi, S. Sharif and R. Jamshidi, A Numerical Investigation on the Dynamic Stall of a Wind Turbine Section Using Different Turbulent Models, International onference on Mechanical, Industrial and Aerospace engineering (ICMIAE) , Venice, Italy, October 2009.
[8] S. Wang, D. B. Ingham, L. Ma, M. Pourkashanian and Z. Tao, Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils, Computers & Fluids, Vol. 39, pp. 1526-1541, 2010.
[9] J. E. Bardina, P. G. Huang and T. J. Coakley, Turbulence Modeling Validation, Testing, and Development, NASA Technical Memorandum 110446, 1997.
[10] Nemec and Otilio, Large Vertical-Axis Variable –Pitch Wind Turbine, United States Patent, Patent No. US 6320273 B1, 2001.
[11] I. S. Hwang, S. Y. Min, I. O. Jeong, Y. H. Lee and S. J. Kim, Efficiency Improvement of a New Vertical Axis Wind Turbine by Individual Active Control of Blade Motion, Smart structures and materials Conference, ETATS-UNIS, Vol. 6173, pp. 617311.1-617312, 2006.
[12] I. S. Hwang, Y. H. Lee and S. J. Kim, Optimization of Cycloidal Water Turbine and the Performance Improvement by Individual Blade Control, Applied Energy, Vol. 86, pp.1532-1540, 2009.
[13] I. Paraschivoiu, O. Trifu and F. Saeed, H-Darrieus Wind Turbine With Blade Pitch Control, International Journal of Rotating Machinery, Vol. 2009, Article ID 505343, pp. 7, 2009.
[14] P. Bhatta, M. A. Paluszek and J. B. Mueller, Individual Blade Pitch and Camber Control for Vertical Axis Wind Turbines, World Wind Energy Conference, in Proc, 2008.
[15] J. W. Oler, J. H. Strickland, B. J. Im, G. H. Graham, Dynamic Stall Regulation of the Darrieus Turbine, SAND83-7029 UC-261, 1983.
[16] S. Lain and C. Osorio, Simulation and evaluation of a straight-bladed Darrieus-type cross flow marine turbine, Journal of Scientific & Industrial Research, Vol. 69, pp.906-912, 2010.
[17] ANSYS, FLUENT 13.0 User’s Guide, ANSYS Inc, 2010.
[18] F. R. Menter, Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA Journal, Vol. 32, pp.1598–1605, 1994.
[19] J. P. Van Doormaal and G. D. Raithby, Enhancements of the SIMPLE Method for Predicting incompressible Fluid Flows, Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.
[20] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔