跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 02:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王俊翔
研究生(外文):Jun-Xiang Wang
論文名稱:利用加壓轉移法製作可撓式染料敏化太陽能電池
論文名稱(外文):Fabrication of Flexible Dye-Sensitized Solar Cells by A Pressurization-Transfer Technique
指導教授:閔庭輝
指導教授(外文):Teen-Hang Meen
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:91
中文關鍵詞:轉移二氧化鈦染料敏化太陽能電池
外文關鍵詞:transferTiO2dye-sensitized solar cell
相關次數:
  • 被引用被引用:1
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文是利用加壓轉移的方式,讓可撓式ITO/PEN 塑膠基板上的二
氧化鈦薄膜可以通過高溫燒結,製作出可撓式染料敏化太陽能電池。
在實驗過程中,不僅改變薄膜的厚度與結構,也改變工作電極的染料。利用 FE - SEM 、 XRD 與 UV - Vis 檢測二氧化鈦薄膜的表面形態和光學特性。使用光強度為1000 W/m2 的太陽光模擬器,量測染料敏化太陽能電池的電壓電流特性曲線,最後,透過EIS與 IPCE分析,探討結
構與染料對太陽能電池的影響。
結果指出,經過高溫燒結的二氧化鈦薄膜加入散射層之工作電極,在
浸泡D149染料後,最高效率為 6.48 %。



In this thesis, the flexible dye-sensitized solar cell was fabricated by a pressurization-transfer technique, which involved assembling TiO2 films on
ITO/PEN flexible substrates via high temperature sintering.
During the experiment, we changed not only the film thickness and structure of TiO2 but also the dye of the working electrode. The surface morphology and optical property of the TiO2 film were examined by FE - SEM, XRD, and UV - Vis. The current - voltage of the DSSC was illuminated by the solar simulator whose incident light intensity was 1000 W/m2. Finally, through electrochemical impedance spectroscopy and incident photon-to-current conversion efficiency analysis, we could investigate that the influence of
structure and dye on dye-sensitized solar cell.
The results indicate that the working electrode which passed high temperature sintering TiO2 films and added scattering layers, after immersing
D149 dye, the dye-sensitized solar cell had the best efficiency was 6.48%.


摘要 ........................................................................................... i
Abstract ........................................................................................... ii
誌謝 ........................................................................................... iii
目錄 ........................................................................................... iv
表目錄 ........................................................................................... vi
圖目錄 ........................................................................................... viii
第一章 緒論................................................................................... 1
1.1 前言................................................................................... 1
1.2 研究動機與目的............................................................... 1
第二章 理論原理與文獻回顧....................................................... 3
2.1 塑膠基板簡介................................................................... 3
2.2 轉移基板簡介................................................................... 5
2.3 二氧化鈦簡介................................................................... 6
2.4 染料敏化太陽能電池....................................................... 10
2.4.1 染料敏化太陽能電池的發展歷史................................... 10
2.4.2 染料敏化太陽能電池的基本組成................................... 11
2.4.3 染料敏化太陽能電池工作原理與傳輸損失................... 18
2.4.4 染料敏化太陽能電池電壓─電流量測特性................... 21
2.5 轉移技術的文獻回顧....................................................... 22
第三章 實驗步驟........................................................................... 25
3.1 實驗藥品與儀器............................................................... 25
3.2 實驗流程........................................................................... 27
3.3 染料敏化太陽能電池的製備........................................... 28
3.3.1 二氧化鈦漿料的製備....................................................... 28
3.3.2 二氧化鈦工作電極的製備............................................... 28
3.3.3 染料的製備與敏化........................................................... 31
3.3.4 電解液的製備................................................................... 31
3.3.5 白金對電極的製備........................................................... 31
3.3.6 染料敏化太陽能電池的封裝........................................... 32
3.4 二氧化鈦薄膜特性分析................................................... 33
3.4.1 X光繞射分析儀(XRD)............................................... 33
3.4.2 場發射掃瞄式電子顯微鏡(FE - SEM)....................... 34
3.4.3 紫外光─可見光吸收光譜儀(UV - Vis)..................... 34
3.5 染料敏化太陽能電池的特性分析................................... 35
3.5.1 染料敏化太陽能電池效率量測....................................... 35
3.5.2 全波段入射光子轉換效率量測(IPCE)........................... 35
3.5.3 電化學交流阻抗量測(EIS)…..................................... 36
3.5.4 電化學交流阻抗分析之等效電路元件與模擬............... 38
第四章 結果與討論....................................................................... 44
4.1 二氧化鈦工作電極之分析............................................... 44
4.1.1 霍爾量測........................................................................... 45
4.1.2 XRD分析.......................................................................... 46
4.1.3 FE - SEM分析.................................................................. 48
4.1.4 UV - Vis穿透與吸收光譜分析........................................ 53
4.2 染料敏化太陽能電池的特性分析................................... 58
4.2.1 直接刮膜與加壓轉移的二氧化鈦結構之DSSC特性分析.......................................................................................
59
4.2.1.1 染料敏化太陽能電池光伏參數的分析........................... 59
4.2.1.2 染料敏化太陽能電池IPCE的分析................................. 63
4.2.1.3 染料敏化太陽能電池交流阻抗的分析與模擬............... 65
4.2.2 加入散射層之DSSC特性分析........................................ 69
4.2.3 不同染料浸泡之DSSC特性分析.................................... 74
第五章 結論................................................................................... 79
未來展望 ........................................................................................... 81
參考文獻 ........................................................................................... 82
Extended
Abstract
...........................................................................................
86
簡歷 ........................................................................................... 94


[1] Aswani Yella, Hsuan-Wei Lee, Hoi Nok Tsao, Chenyi Yi, Aravind Kumar Chandiran, Md.Khaja Nazeeruddin, Eric Wei-Guang Diau, Chen-Yu Yeh, Shaik M Zakeeruddin, Michael Gratzel, 2011, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency”, Science 334, 629.
[2]陳婉如,2005,“有機太陽能電池技術開發與實用化進展”,光連雙月刊,56期,24-27。
[3]日本Peccell公司,http://www.hs-kr.com/pds/PEC-S20catalogue.pdf。
[4]簡國明、洪長春、吳典熹、王永銘、藍怡平,2003,“奈米專利地圖及分析”,行政院國家科學委員會科學技術資料中心。
[5]詹志潔,2006,“Effect of pH on the formation of crystalline TiO2 nanoparticles prepared by sol-gel method”,逢甲大學化學工程學系碩士論文。
[6]高濂、鄭珊、張青紅,2004,“奈米光觸媒”,五南圖書。
[7] M Landmann, E Rauls, W G Schmidt, 2012, “The electronic structure and optical response of rutile, anatase and brookite TiO2”, Journal of Physics: Condensed Matter, 629 (2011).
[8]翁敏航,2010,“太陽能電池”,東華書局,第七章。
[9] Ulrike Diebold , 2003, “The surface science of titanium dioxide”, Surf. Sci. Rep., 48, 53-229.
[10] K. M. Reddy, S. V. Manorama, A. R. Reddy, 2011, “Bandgap studies on anatase titanium dioxide nanoparticles”, Mater. Chem. Phy., 78, 239-245.
[11] Michael Gratzel, 2011, “Photoelectro chemical cells”, Nature, 414, 338-344.
[12] H. Tsubomura, M. Matsumura, Y. Nomura and T. A mamiya, 1979, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature, 261, 402.
[13] B. O''Regan, Michael Gratzel, 1991, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353, 737.
[14] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gratzel , 1993, “Conversion of light to electricity by cis-X2bis(2,2''-bipyridyl-4,4''-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes”, J. Am. Chem. Soc., 115, 6382-6390.
[15] Mohammad K. Nazeeruddin, Filippo De Angelis, Simona Fantacci, Annabella Selloni, Guido Viscardi, Paul Liska, Seigo Ito, Bessho Takeru, and Michael Gratzel, 2005, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, J. Am. Chem. Soc., 127, 16835-16847.
[16] Michael Gratzel, 2004, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. & Photobio. A: Chem., 164, 3-14.
[17] M. H. Yang,“太陽電池用透明導電膜材料”,工業材料雜誌,265期。
[18]劉茂煌,2002,工業材料雜誌,203期,P1-49。
[19] Michael Gratzel, 2005, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorg. Chem., 44, 6841-6851.
[20]A. Mishra, M. K. R. Fischer, P. Bauerle, 2009, “Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules”, Angew. Chem. Int. Ed., 48, 2474-2499.
[21] T. Horiuchi, H. Miura, S. Uchida, 2003, “Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules”, Chem. Commun., 3036-3037.
[22] T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, 2004, “High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes”, J. Am. Chem. Soc., 126, 39, 12218.
[23]薛惟聰,2008,“新型含雙噻吩環戊烷之有機小分子光敏化染料的合成與性質探討”,國立中央大學化學研究所碩士論文。
[24] Kristofer Fredin, 2007, “Studies of Charge Transport Processes in Dye-Sensitized Solar Cells”.
[25] G. Franco, J. Gehring, L. M. Peter, E. A. Ponomarev, I. Uhlendorf, 1998, “Frequency-Resolved Optical Detection of Photoinjected Electrons in Dye-Sensitized Nanocrystalline Photovoltaic Cells”, Journal of Physical Chemistry B, 103 (4), 692-698.
[26] B. A. Gregg, F. Pichot, S. Ferrere, C. L. Fields, 2001, “Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces”, Journal of Physical Chemistry B, 105 (7), 1422-1429.
[27] P. Wang, R. H. Baker, J. E. Moser, S. M. Zakeeruddin, M. Gratzel, 2004, “Amphiphilic Polypyridyl Ruthenium Complexes with Substituted 2,2''-Dipyridylamine Ligands for Nanocrystalline Dye-Sensitized Solar Cells”, Chemistry of Materials, 16(17), 3246-3251.
[28] G.R.A. Kumara, S. Kaneko, M. Okuya, K. Tennakone , 2002, “Fabrication of Dye-Sensitized Solar Cells Using Triethylamine Hydrothiocyanate as a CuI Crystal Growth Inhibitor”, Langmuir, 18(26), 10493-10495.
[29] Q. B. Meng, K. Takahashi, X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, 2003, “Fabrication of Dye-Sensitized Solar Cells Using Triethylamine Hydrothiocyanate as a CuI Crystal Growth Inhibitor”, Langmuir, 19(9), 3572-3574.

[30] A. Noda, K. Hayamizu, M. Watanabe, 2001, “Pulsed-Gradient Spin-Echo 1H and 19F NMR Ionic Diffusion Coefficient, Viscosity, and Ionic Conductivity of Non-Chloroaluminate Room-Temperature Ionic Liquids” , Journal of Physical Chemistry B, 105(20), 4603-4610.
[31]張智信,2008,“陽極處理法製備二氧化鈦奈米管狀結構並應用於染料敏化太陽能電池之研究”,國立臺北科技大學材料科學與工程研究所碩士學位論文。
[32]鄭傑中,2009,“二氧化鈦奈米管陣列的製備與分析極染料敏化太陽能電池的應用”,國立臺北科技大學有機高分子研究所碩士學位論文。
[33] A. Hauch, A. Georg, 2001, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells”, Electrochimica Acta, 46, 3457-3466.
[34] Michael Durr, Andreas Schmid, Markus Obermaier, Silvia Rosselli, Akio Yasuda, Fabriele Nelles, 2005, “Low-temperature fabrication of dye-sensitizedsolar cellsby transfer of composite porous layers”, Nature materials, 4, 607-611.
[35] Li Yang, Liqiong Wu, Mingxing Wu, Gang Xin, Hong Lin, Tingli Ma, 2010, “High-efficiency flexible dye-sensitized solar cells fabricated by a novel
friction-transfer technique”, Electrochemistry Communication, 12, 1000-1003.
[36]林麗娟,1994,“X光繞射原理及其應用”,工業材料雜誌,86期。
[37]林智仁,2002,“場發射式掃瞄式電子顯微鏡”,工業材料雜誌,181期。
[38]金祖永,2007,“鑭鈣鈷鐵氧化物作為SOFC陰極之氧化還原反應觸媒作用”,國立台灣科技大學化學工程系碩士學位論文。
[39] Liyuan Han, Naoki Koide, Yasuo Chiba, Takehito Mitate, 2004, “Modeling of an equivalent circuit for dye-sensitized solar cells”, Appl. Phys. Lett., 84, 2433-2435.
[40] Q. Wang, J. E. Moser, M. Gratzel, 2005, “Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 109, 14945-14953.
[41] Juan Bisquert, 2002, “Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer”, J. Phys. Chem. B, 106, 325-333.
[42] Hsin-Wei Chen, Kuan-Chieh Huang, Chih-Yu Hsu, Chia-Yu Lin, Jian-Ging Chen, Chuan-Pei Lee, Lu-Yin Lin, R.Vittal, Kuo-Chuan Ho, 2010, “Electrophoretic deposition of TiO2 film on titanium foil for a flexible dye-sensitized solar cell”, Electrochimica Acta.
[43]王泳麒,2005,“氧化銦錫經準分子雷射照射處理之表面特性研究”,逢甲大學電機工程學系碩士班碩士論文。
[44] N. G. Park, J. van de Lagemaat, A. J. Frank, 2000, “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, J. Phy. Chem. B, 104, 8787-8994.

[45] Jun-Ho Yum, Seok-Soon Kim, Dong-Yu Kim, Yung-Eun Sung, 2005, “Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells”, Chemistry, 173, 1-6.
[46] C. K. Lin, T. J. Yang, Y. C. Feng, T. T. T sung, C. Y. Su, 2006, “Characterization of elecrophoretically depositied nanocrystalline titanium dioxide films”, Surface & Coatings Technology, 200, 3184-3189.
[47] Henrik Lindstrom, Anna Holmberg, Eva Magnusson, Sten-Eric Lindquist, Lennart Malmqvist, Anders Hagfeldt, 2001, “A New Method for Manufacturing Nanostructured Electrodes on Plastic Substrates”, Nano Letters., 1, 2, 97-10.
[48] Kyung-Jun Hwang, Sung-Hoon Jung, Dong-Won Park, Seung-Joon Yoo, Jae-Wook Lee, 2010, “Heterogeneous ruthenium dye adsorption on nano-structured TiO2 films for dye-sensitized solar cells”, Current Applied Physics, 10, S184-S187.
[49]Wei-Hao Chiu, Kun-Mu Lee, Wen-Feng Hsieh, 2011, “High efficiency flexible dye-sensitized solar cells by multiple electrophoretic depositions”, Journal of Power Sources, 196, 3683-3687.
[50] Hsin-Wei Chen, Kuan-Chieh Huang, Chih-Yu Hsu, Chia-Yu Lin, Jian-Ging Chen,Chuan-Pei Lee, Lu-Yin Lin, R.Vittal, Kuo-Chuan Ho, 2010, “Electrophoretic deposition of TiO2 film on titanium foil for a flexible dye-sensitized solar cell”, Electrochimica Acta.
[51] H.C. Weerasinghe, P.M. Sirimanne, G.V. Franks, G.P. Simon, Y.B. Cheng, 2010, “Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, 213, 30-36.
[52] Jin-Kook Lee, Bo-Hwa Jeong, Sung-il Jang, Young-Guen Kim, Yong-Wook Jang, Su-Bin Lee, Mi-Ra Kim, 2009, “Preparations of TiO2 pastes and its application to light-scattering layer for dye-sensitized solar cells”, Journal of Industrial and Engineering Chemistry, 15, 724-729.
[53] Yasuhiro Tachiban, Hitomi Y. Akiyam, Susumu Kuwabat, 2007, “Optical simulation of transmittance into a nanocrystalline anatase TiO2 film for solar cell applications”, Solar Energy Materials & Solar Cells, 91, 201-206.
[54]Guido Rothenberger, Pascal Comte, Michael Gratzel, 1999, “A contribution to the optical design of dye-sensitized nanocrystalline solar cells”, Solar Energy Materials & Solar Cells, 58, 321-336.
[55] In Gyoung Yu, Yong Joo Kim, Hark Jin Kim, Chongmu Lee,Wan In Lee, 2010, “Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells”, Journal of Materials Chemistry.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top