跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 23:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許淑斐
研究生(外文):Shu-Fei Hsu
論文名稱:投資組合持股調整與績效之實証研究-以台灣50成分股為例
論文名稱(外文):Rebalance of Portfolios and their Performances – A Case Study of the Taiwan 50 Index Constituents
指導教授:許江河許江河引用關係
指導教授(外文):Philip Hsu
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:經營管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:67
中文關鍵詞:台灣50成分股報酬率預測風險預測相關係數預測投資組合績效
外文關鍵詞:Taiwan 50 Index ConstituentsForecast of returnForecast of RiskPrediction of Correlation coefficientPortfolio Performanc
相關次數:
  • 被引用被引用:0
  • 點閱點閱:475
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以台灣50成分股為標的,分析投資組合持股調整方式與績效之關係。除了將各檔成分股以等權重的方式配置外,另用AR、GARCH及指數平滑模型分別預測下一期的報酬率、標準差與相關係數,並進一步將各模型所預測出來的數據,分別配合歷史資料所求出之統計量,經由固定視窗滾動法,透過設定夏普比率最大及風險最小的方式規劃求解出最佳投資組合;同時設定多組重新調整投資組合的時機點,分別敘述如下:
(1)以時間為周期,在每週、每月、每季、每年為設置組合調整時點進場持有,於上敘指定時間重新調整投資組合的持股分配。
(2)設定風險出場時點,當研究期間內投資組合風險波動高至某一程度(5%、10%、15%),便重新調整投資組合的持股分配。
(3)訂立虧損程度的出場時點,當研究期間內整體投資組合價值低於容忍門檻(-5%、-10%、-15%),便重新調整投資組合的持股分配。
本文所採用的資料為2001年1月至2010年12月各檔成分股的開盤與收盤價。實證結果顯示相較於同類型基金與大盤績效表現,在考慮交易成本後,藉由AR模型所擬定的投資組合並以每一季調整一次的方式所建構的投資組合有較佳的績效。


In this study, we use the data of the Taiwan 50 Constituents to discuss the relationship between the rebalance of portfolios and their performances. We use the equally weighted portfolios as well as the portfolios. Through the fixed window estimation, which returns, variances and/or correlations are predicted by the AR, GARCH and Exponential Smoothing models, respectively. The optimal portfolios would be built by solving the maximum problESM of the Sharpe ratio and minimum portfolios risk. We also set sveral combinations of rebalancing point of the portfolio, described as follows:
(1)Rebalancing at regular intervals of time, in weekly, monthly, quarterly, and annualy.
(2)Balancing based on waiting until the risk of portfolio grows to some threshold that triggers action. (5%、10%、15%)
(3)Balancing based on waiting until the values of portfolio reduce to some threshold that triggers action. (-5%、-10%、-15%)
The data used in this study are the daily data of the Taiwan 50 Constituents and spans from January 2001 to December 2010. Our result shows that under consideration of transaction cost, the portfolio, which is constructed by the AR model and quarterly rebalanced, has the best performance. Furthermore, it also outperforms the same type of stock index funds and the market.



目錄
中文摘要............................................................i
英文摘要............................................................iii
誌謝................................................................v
目錄................................................................vi
表目錄..............................................................viii
圖目錄..............................................................ix
第一章 緒論.........................................................1
1.1 研究動機與目的..................................................1
1.2 研究設計........................................................5
1.3 研究流程........................................................7
1.4 研究架構........................................................9
第二章 文獻探討.....................................................10
2.1 台灣50指數......................................................10
2.2 濾嘴法則........................................................11
2.3 效率前緣與夏普比率..............................................13
2.4 AR模型..........................................................17
2.5 GARCH模型.......................................................18
2.6 指數平華模型....................................................21
第三章 研究方法.....................................................22
3.1 資料來源........................................................22
3.1.1 研究期間......................................................23
3.2 持股調整方式....................................................25
3.3 濾嘴法則下投資組合風險與價值波動門檻設置........................29
3.4 研究設計與模型..................................................31
3.4.1 夏普比率......................................................31
3.4.2 共變異數矩陣..................................................32
3.4.3 規劃求解......................................................37
3.5 報酬率計算......................................................37
第四章 實證分析.....................................................41
4.1 不同投資組合資產配置績效........................................41
4.1.1 以時間為基礎重新調整投資組合的方式............................41
4.1.2 以濾嘴法則為基礎重新調整投資組合的方式........................42
4.2 考量風險後不同投資組合資產配置績效..............................44
4.2.1 考量風險後以時間為基礎重新調整投資組合的方式..................44
4.2.2 考量風險後以濾嘴法則為基礎重新調整投資組合的方式..............46
4.3 同類型基金與大盤之績效..........................................51
4.4 統計檢定........................................................52
第五章 結論與建議...................................................54
5.1 結論............................................................54
5.2 建議............................................................55
參考文獻............................................................56

表目錄
表3.5.1 舉例說明報酬率計算方式......................................39
表4.1.1.1 投資組合在各種調整頻率下的幾何平均年化報酬率..............42
表4.1.2.1 投資組合在各種調整機制下的幾何平均年化報酬率..............43
表4.2.1.1 投資組合在各種調整頻率下的年化標準差......................45
表4.2.1.2 投資組合在調整後的報酬率..................................45
表4.2.2.1投資組合在各種調整機制下的年化標準差.......................47
表4.2.2.2 投資組合在調整後的報酬率..................................47
表4.2.2.3 彙整120種投資組合在調整風險後的報酬率.....................49
表4.3.1 同類型基金與大盤之績效表現..................................51
表4.4.1 投資組合績效1至5名與同類型基金及加權股價指數之檢定..........52

圖目錄
圖1.3.1 研究流程圖..................................................8
圖2.3.1 投資組合效率前緣............................................14
圖2.3.2 夏普比率最大化下最適的投資組合配置..........................17
圖3.1.1 台灣50指數相關資訊與本研究樣本取樣的時間軸..................23
圖3.2.1 成分股權重進行調整的方式與時間..............................27
圖3.2.2 不等權重方式的成分股配置....................................28
圖3.3.1 風險控制....................................................29
圖3.3.2 投資組合價值波動設置........................................30
圖3.5.1當期投資組合報酬率計算方式...................................38

[1]Sharpe, W. F., 1966, “ Mutual Fund Performance”. Journal of Business, 119–138.
[2]Jensen, M. C., “The Performance of Mutual Funds in the Period 1945–1964. Journal of Finance”, 1968, 389–416.
[3]Ippolito, R. A., 1989, “Efficiency with Costly Information: A Study of Mutual Fund Performance”, Quarterly Journal of Economics,, 1–23.
[4]Malkiel, B. G., “ Returns from Investing in Equity Mutual Funds 1971 to 1991. Journal of Finance”, 1995, 549–572.
[5]Gruber, M. J., Another P., 1996, “The Growth in Actively Managed Mutual Funds. ”, Journal of Finance, 783–810.
[6]Hendricks, D., J. Patel and R. Zeckhauser. "Hot hands in mutual funds: Short-run persistence of relative performance 1974-1988." Journal of Finance 48, 1993, pp 93-130.
[7]Grinblatt, M., and Titman, S., 1989, “Mutual Fund Performance: An Analysis of Quarterly Portfolio Holdings.”, Journal of Business, 393–416.
[8]Chalmers, J. M. R., Edelen, R. M, and Kadlec, G. B., 2001, “On the Perils of Financial Intermediaries Setting Security Prices: The Mutual Fund Wild Card Option.”, Journal of Finance, 2209–2236.
[9]Edelen, R. M, 1999, “Investor Flows and the Assessed Performance of Open-End Mutual Funds.” Journal of Financial Economics, 439–466.
[10]Wermers, R., 2000, “ Mutual Fund Performance: An Empirical Decomposition into Stock-Picking Talent, Style, Transaction Costs, and Expenses.”, Journal of Finance, 1655–1695.
[11]Chevalier, J. A, and Ellison, G. D., 1999., “Are some mutual fund managers better than others? Cross-sectional patterns in behavior and performance”, Journal of Finance 54, 875–899.
[12]Grossman, Sanford J. and Stiglitz, Joseph E. “On the Impossibility of Informationally Efficient Markets.” American Economic Review, 1980, 70, pp. 393-408.
[13]Berk, J. B.,and Green, R. C., 2004, “Mutual Fund Flows and Performance in Rational Markets.” The Journal of Political Economy, 112, 1269-1285.
[14]Bollen, Nicolas and Jeffrey Busse, 2005, “Short-term persistence in mutual fund performance.” , Review of Financial Studies 18, 569-597.
[15]Elton, Edwin, 1993 Gruber, Martin J, Das, Sanjiv, Hlavka, and Mattew, “Efficiency with Costly Information: A Reinterpretation of Evidence from Managed Portfolios.” Review of Financial Studies, 6, 1-22.
[16]Treynor, J. L, and Mazuy, K. K., 1966, “Can Mutual Fund Outguess the Market”, Harvard Business Review, July-August, 131-135.
[17]Henriksson, Roy D., 1984. “Market timing and mutual fund performance:An empirical investigation. ”The Journal of Business, 57, 73-96.
[18]Zeckhauser, Darryll, Jayendu,and Richard, 1993. “Hot hands in mutual funds: Short-run persistence of relative performance.”, 1974-1988. The Journal of Finance, 48, 93-130.
[19]Goetzmann, William, and Roger Ibbotson, 1994, “Do Winners Repeat? Patterns in Mutual Fund Performance,” Journal of Portfolio Management 20, 9-17.
[20]Daniel, Grinblatt, Titman, and Wermers., 1997 “Measuring Mutual Fund Performance with Characteristic-based Benchmarks. ” Journal of Finance, 52, 1035-1058.
[21]Grinblatt and Keloharju, 2000, “The investment behavior and performance of various investor types: A study of Finland’s unique data set, Journal of Financial Economics ”, 55, 46-67.
[22]Jegadeesh, N., and S. Titman, 1993, “Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency,” Journal of Finance, 48, 65-91.
[23]Eakins, S, and Stansell, S., 2007,“An examination of alternative portfolio rebalancing strategies applied to sector funds.”, Journal of Asset Management, 1–8.
[24]Scott Below, Ph.D., Joe Kiely, Ph.d ,Robert Prati, Ph.D., 2009 , “Style index rebalancing for better diversification: lessons from broad market and equity style indexe”, Financial Services Review, 231–248.
[25]Markowitz, H. (1952), “Portfolio Selection,” Journal of Finance, Vol.7, No.1, 77-91.
[26]Alexander, Sindey S., 1961, “Price Movement in Speculative Markets: Trends or Random Walks. ” ,Industrial Management Review, p199-218.
[27]John Nersesian, “Active Portfolio Rebalancing: A Disciplined Approach to Keeping Clients on Track,” Monitor 21, no.1 (January/February 2006): 9–15.
[28]Engle, R.,1982,“Autorregressive Conditional Heteroskedasticity with Estimates of United Kingdom Inflation”, Econometrica, 50, 987-1008.
[29]Bollerslev, T., 1987, “A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return”, Review of Economics and Statistics, 542–547.
[30]Cassuto, A.E. (1995), “Non-Normal Error Patterns: How to Handle Them,” The Journal of Business Forecasting: Methods and SystESM, 14, 15-16.
[31]Brown, R.G., 1963, ”Smoothing Forecasting and Prediction of Discrete Time Series”, Englewood Cl i ff s,N. J . , Prent ice Hal l , Inc. Edwin J. Elton, Martin J. Gruber, Stephen J. Brown, and William N.Goetzmann, Modern Portfolio Theory and Investment Analysis, New York: John Wiley & Sons, 2003.
[32]Edwin J. Elton, Martin J. Gruber, Stephen J. Brown, and William N.Goetzmann, Modern Portfolio Theory and Investment Analysis, New York: John Wiley & Sons, 2003.
[33]Elton, E.J. and M.J. Gruber, 1973, Estimating the Dependence Structure of Share Prices – Implications for Portfolio Selection, Journal of Finance 28, 1203-1232.
[34]Elton, E.J., M.J. Gruber and T. Ulrich, 1978, Are Betas Best? Journal of Finance 23, 1375-1384.
[35]Edwin J. Elton, Martin J. Gruber, and Jonathan Spitzer., 2006, “Improved Estimates of Correlation and their Impact on the Optimum Portfolios”, European Financial Management. Vol. 12, No. 3, 303-318.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top