(18.210.12.229) 您好!臺灣時間:2021/03/01 06:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖紘毅
研究生(外文):Hong -Yi Liao
論文名稱:汽車後搖臂管液壓成形灰關聯分析
論文名稱(外文):Grey Relational Analysis for Trailing Arm Tube Hydroforming
指導教授:林盛勇
指導教授(外文):Shen-Yung Lin
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:創意工程與精密科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:73
中文關鍵詞:汽車後搖臂預彎曲田口方法灰關聯最佳最小壁厚
外文關鍵詞:trailing armpre-bendingTaguchi methodsgrey relational analysisminimum wall thickness
相關次數:
  • 被引用被引用:1
  • 點閱點閱:276
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
隨著現代車輛輕量化、省能源、低成本與高性能的發展趨勢,管件液壓成形技術已成為國際間汽車產業主流製造技術之一。
本文探討汽車後搖臂管件成形,由於後搖臂為一複雜3D幾何外形的汽車管件,成形過程需經過兩道預彎曲及一道液壓成形。本文首先採用有限元素法模擬後搖臂管件的成形過程,藉由製程參數的調整;如左、右端沖頭速度及內壓力等,檢視這些製程參數的改變,於此管件成形壁厚的影響趨勢、等效應力與等效應變的分佈情形及成形性等。
接著使用田口法中的直交表與因子反應表,分別以最小壁厚及完整脹形成功的最大等效應力作為目標函數,以望目特性及望小特性求出個別品質目標的最佳參數水準組合。最後藉由灰關聯分析法,將上述各單一品質目標整合成一個多重品質目標,重新建立因子反應表,找出多重品質的最佳參數水準組合並與單一品質所得之結果進行比較。
分析結果發現,由於本後搖臂管為一複雜幾何外型的管件,各部位管徑大小不同,其右側管徑大於左側,故右側沖頭補料速度必須大於左側,方可避免右側管壁因內壓力的鼓脹而破裂,此舉同時亦有助於成形成功。就單一品質變異數分析的因子貢獻率可看出,影響壁厚的主要製程參數為左沖頭速度,而影響等效應力值的主要參數為內壓力。單一品質所獲得之最佳最小壁厚比多重品質所求得之最佳最小壁厚大,且單一品質所獲得的最佳最大等效應力比多重品質所求得小。此乃單一品質只滿足單一目標所致,其無法同時兼顧其他品質之要求。而使用灰關聯分析可獲得兼具多重目標品質要求之最佳製程參數組合。


Along with the trend of development for weight reduction, energy-saving, low-cost, and high performance, tube hydroforming technique has become one of the major manufacturing technologies in the automotive industry worldwide.
This work presents the tube forming of a trailing arm. The trailing arm is an automotive tube part in a complicated 3D geometrical shape. The process of forming should be performed pre-bending twice and a hydroforming. This work firstly utilizes the finite element method to simulate the forming process of the trailing arm. Through the adjustments of the process parameters, such as velocity of left and right punch, internal pressure, and so on, it examines the level changes of these parameters related to the influence trend of the wall thickness of the forming tube, the distribution of equivalent stresses and strains, and the formability.
Secondly, by the orthogonal array and factor response table in Taguchi Method, take the minimum wall thickness and the maximum equivalent stress as the object functions, and obtain the optimal parameter combinations corresponding to each single quality object with nominal-the-best and smaller-the-best, respectively. Finally, by grey relational analysis, the above single quality objects are integrated as a multi-quality object. Re-establish the factor response table to figure out the optimal parameter combination fulfilling a multi-quality object, and compare the results with those obtained from the single quality object.
From the analytical results, due to the complicated geometrical shape of the trailing arm, it found that the velocity of the right punch for billet material feeding should be higher than the left to prevent the bursting of the tube wall on the right side due to the bulging of the internal pressure since the tube diameter on the right side is larger than the left one. This is also helpful for the success opportunity of forming. From the factor contribution rate in analysis of variance for single quality object, it can be found that the major process parameter that affects the wall thickness is the left punch velocity, and the major process parameter that affects the equivalent stress is the internal pressure. The minimum wall thickness obtained from the single quality object is larger than that obtained from the multi-quality object; meanwhile, the optimal maximum equivalent stress obtained from the single quality object is smaller than the multi-quality object. This is because the single quality object only satisfies the single object and unable to match the other quality requirements at the same time. With grey relational analysis, the optimal process parameter combination of the multi-quality object can be obtained.


中文摘要……………………………………………….. i
Abstract …………………………………….. iii
誌謝 ………………………………………….…….. v
目錄 ………………………………………………... vi
表目錄 ………………………………………………… vii
圖目錄 …………………………………………………. viii
符號說明……………………………………………….. ix
第一章 前言…………………………………………... 1
1.1 研究背景與動機…………………………….. 1
1.2 研究目的……..…………….…..…………. 4
1.3 文獻回顧……………………….…………….. 4
1.4 論文架構……………………….…………….. 12
第二章 理論基礎…………………………….……….. 13
2.1 有限元素相關學理………………….……….. 13
2.2 摩擦模式…………………………………….. 18
2.3 材料變形相關理論…………………………... 18
2.4 最佳化理論..………………………………… 20
2.5 灰關聯分析.……….……………………….. 23
第三章 汽車後搖臂加工有限元模擬….………….…. 26
3.1 模擬模型建立..…………….……………... 26
3.2 製程參數選定…………….………………….. 31
3.3 DEFORM-3D模擬設定…………………………… 33
第四章 結果與討論……………………………… 43
4.1 壁厚分佈趨勢...............……………… 43
4.2 製程參數對壁厚之影響………….………… 48
4.3 應力與應變分佈.……………………………… 51
4.3.1預彎曲.……………………………. ........51
4.3.2 液壓成形.……………………………………. 55
4.4 製程參數最佳化.……………………………… 57
4.5 灰關聯分析.…………………………………… 61
第五章 結論…………………………………...….... 64
參考文獻 ………………………………………. 65
Extended
Abstract .....………………………………………... 70
作者簡歷 ……………………………………... 73


[1] J. B. Yang, B. H. Jeon, S. I. Oh, 2001, The tube bending technology of a hydroforming process for an automotive part, Journal of Materials Processing Technology, Vol. 111, pp.175-181
[2] P. Gantner, H. Bauer, D. K. Harrison, A. K.M. De Silva, 2005, Free-Bending-A new bending technique in the hydroforming process chain, Journal of Materials Processing Technology, Vol. 167, pp.302-308
[3] H. Lee, C.J. Van Tyne, D. Field, 2005, Finite element bending analysis of oval tubes using rotary draw bender for hydroforming applications, Journal of Materials Processing Technology, Vol. 168, pp.327-335
[4] L. Gao, M. Strano, 2004, FEM analysis of tube pre-bending and hydroforming, Journal of Materials Processing Technology, Vol. 151, pp. 294-297
[5] J. Kim, S.J. Kang, B.S. Kang, 2002, Computational approach to analysis and design of hydroforming process for an automobile lower arm, Computers and Structures, Vol. 80, pp. 1295-1304
[6] S.J. Yuan, C. Han, X.S. Wang, 2006, Hydroforming of automotive structural components with rectangular-sections, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 1201-1206
[7] M.Y. Lee, S.M. Sohn, C.Y. Kang, S.Y. Lee, 2002, Study on the hydroforming process for automobile radiator support members, Journal of Materials Processing Technology, Vol. 130-131, pp.115-120
[8] M. Ahmetoglu, T. Altan, 2000, Tube hydroforming: state-of-the-art and future trends, Journal of Materials Processing Technology, Vol. 98, pp. 25-33
[9] 陳復國、邱黃正凱、林瑞豪,2005,管件液壓成形模具設計分析,鍛造,14卷4期,p. 28-40
[10] 莊志宇、黃建成、李明富、鄭炳國,2005,應用管件液壓成形技術於汽車排氣管開發,鍛造,14卷1期,p. 16-22
[11] K.I. Johnson, B. N. Nguyen, R.W. Davies, G. J. Grant, M. A. Khaleel, 2004, A numerical process control method for circular-tube hydroforming prediction, International Journal of Plasticity, Vol. 20, p.1111-1137
[12] S. Yuan , W. Yuan, X. Wang, 2006, Effect of wrinkling behavior on formability and thickness distribution in tube hydroforming, Journal of Materials Processing Technology, Vol. 177, p. 668-671
[13] 張俊明,2006,鎂合金管件液壓成形製程參數之建立,國立虎尾科技大學機械與機電工程研究所碩士論文
[14] S.M. Sohn, B.J. Kim, K.S. Park , Y.H. Moon, 2007, Evaluation of the crash energy absorption of hydroformed bumper stays, Journal of Materials Processing Technology, Vol. 187-188, p. 283-286
[15] 唐?、?再象,2008,潤滑條件對管件液壓成形結果的影響,鍛壓技術,33卷4期,p. 60-62,66
[16] Y.M. Hwang, T.C. Lin, W.C. Chang, 2007, Experiments on T-shape hydroforming with counter punch, Journal of Materials Processing Technology, Vol. 192-193, p. 243-248
[17] S.W. Lee, 2002, Study on the forming parameters of the metal bellows, Journal of Materials Processing Technology, Vol. 130-131, p. 47-53
[18] 徐祥合、???、李淑慧、?兵,2007,材料性能參數對液壓成形件厚度分布的影響規律研究,塑性工程學報,14卷6期, p. 101-104
[19] J.P. Abrantes, Carlos Eduardo C′elia de Lima, G.F. Batalha, 2006, Numerical simulation of an aluminum alloy tube hyroforming, Journal of Materials Processing Technology, Vol. 179, pp. 67-73
[20] B.H. Kang, M.Y. Lee , S.M. Shon, Y.H. Moon, 2007, Forming various shapes of tubular bellows using a single-step hydroforming process, Journal of Materials Processing Technology, Vol. 194, p. 1-6
[21] L.P. Lei, D.H. Kim, S.J. Kang, S.M. Hwang, B.S. Kang, 2001, Analysis and design of hydroforming processes by the rigid–plastic finite element method, Journal of Materials Processing Technology, Vol. 114, p. 201-206
[22] M. Sorine, C. H. M. Simha, I.V. Riemsdijk, M.J. Worswick, 2008, Prediction of necking of high strength steel tubes during hydroforming—multi-axial loading, International Journal of Mechanical Sciences, Vol. 50, p. 1411–1422
[23] N. Asnafi, A. Skogsgardh, 2000, Theoretical and experimental analysis of stroke-controlled tube hydroforming, Materials Science and Engineering, Vol. A279, p. 95-110
[24] N. Jain, J. Wang, R. Alexander, 2004, Finite element analysis of dual hydroforming processes, Journal of Materials Processing Technology, Vol. 145, pp. 59-65
[25] 侯?明、李胜衹、?健清、尹元德,2007,液壓成形管材性能評價方法研究現狀,安徽工業大學學報,24卷3期,p. 261-265
[26]姚丹、高振莉、?晶賢,2007,圓管液壓成形過程有限元模擬及失效分析研究,鍛壓技術,32卷5期,p. 145-147
[27] L.H. Lang, Z.R. Wang, D.C. Kang, S.J. Yuan, S.H. Zhang, J. Danckert, K.B. Nielsen, 2004, Hydroforming highlights: sheet hydroforming and tube hydroforming, Journal of Materials Processing Technology, Vol. 151, p. 165-177
[28] H. Orban, S.J. Hu, 2007, Analytical modeling of wall thinning during corner filling in structural tube hydroforming, Journal of Materials Processing Technology, Vol. 194, p.7-14
[29] M. Keigler, H. Bauer, D. Harrison, Anjali K.M. De Silva, 2005, Enhancing the formability of aluminium components via temperature controlled hydroforming, Journal of Materials Processing Technology, Vol. 167, p.363-370
[30] H.Y. Li, X.S. Wang, S.J. Yuan, Q.B. Miao, Z.R. Wang, 2004, Typical stress states of tube hydroforming and their distribution on the yield ellipse, Journal of Materials Processing Technology, Vol. 151, p.345-349
[31] D. Daly, P. Duroux, M. Rachik, J. M. Roelandt, J. Wilsius, 2007, Modelling of the post-localization behaviour in tube hydroforming of low carbon steels, Journal of Materials Processing Technology, Vol. 182, p.248-256
[32] 李?杲、高霖、王輝、李波,2006,叉型件管端軸向位移驅動式液壓成形技術,華南理工大學學報(自然科學版),34卷11期,p. 10-15
[33] ?兵、???、林忠欽、?新平,2007,管件液壓成形動力顯示有限元仿真的虛擬加載時間分析,中國機械工程,18卷8期,p. 904-906,911
[34] ?正潮、?富君、?津洋、郭小?、朱??、徐??,2008,當量屈服強度法在雙層管液壓成形中的應用,壓力容器,25卷8期, p. 20-24
[35] 傅伊坤、李明富、鄭炳國、莊志宇,2002,液壓成形技術於精密波紋管產品開發,鍛造,11卷4期,p. 80-89
[36] 朱恭德,2007,灰關聯分析應用於超音波多重品質特性之最佳化製程,逢甲大學機械工程研究所碩士論文
[37] M. F. Chen, Y. S. Ho, W. T. Hsiao, T. H. Wu, S. F. Tseng, K. C. Huang, 2011, Optimized laser cutting on light guide plates using grey relational analysis, Optics and lasers in Engineering , Vol. 49, p.222-228
[38] 柯俊宏,2003,灰關聯分析結合田口參數設計應用於逆向工程點群資料處理之研究,大葉大學自動化工程學系碩士論文
[39] L. K. Pan, C. C. Wang, S. L. Wei, H. F. Sher, 2007, Optimizing multiple quality characteristics via Taguchi method-based Grey analysis, Journal of Materials Processing Technology, Vol. 182, p.107-116.
[40] Y. M. Chiang, H. H. Hsieh, 2009, The use of the Taguchi method with grey relational analysis to optimize the thin-film sputtering process with multiple quality characteristic in color filter manufacturing, Computers & Industrial Engineering, Vol. 56, p.648-661
[41] 張偉哲、溫坤禮、張廷政,2000,灰關聯模型方法與應用,初版,高立圖書有限公司,台北
[42] C. T. Lin, C. W. Chang, C. B. Chen, 2006, The worstill-conditioned silicon wafer slicing machine detected by using grey relational analysis, ORIGINAL ARTICLE, Vol. 31, p.388-395

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔