跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 02:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖宗慶
研究生(外文):Liao, ZongChing
論文名稱:烯烴嵌段共聚物/熱塑性聚胺基甲酸酯環保彈性體材料之製備及性質研究
論文名稱(外文):Preparation And Properties Of Olefin Block Copolymer/Thermoplastic Polyurethane Eco-blends And Composites
指導教授:陳文智陳文智引用關係賴森茂賴森茂引用關係
指導教授(外文):Chen, WenChihLai, SunMou
口試委員:陳文智賴森茂王曄董崇民
口試委員(外文):Chen, WenChihLai, SunMouWang,YehDon, TrongMing
口試日期:2012-06-22
學位類別:碩士
校院名稱:中國文化大學
系所名稱:化學工程與材料工程學系奈米材料碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:105
中文關鍵詞:烯烴嵌段共聚物熱塑性聚胺基甲酸酯馬來酸酐己二胺
外文關鍵詞:Olefin block copolymerThermoplastic polyurethaneMaleic anhydrideHexamethylenediamine
相關次數:
  • 被引用被引用:1
  • 點閱點閱:322
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討烯烴嵌段共聚物(Olefin block copolymer, OBC)與熱塑性聚胺基甲酸酯(Thermoplastic polyurethane, TPU)環保材料之性質,使用混練機(Mixer)以熔融方法將OBC作為基材,以過氧化物(Dicumyl Peroxide, DCP)為接枝起始劑,首先將過氧化物(DCP)與馬來酸酐(Maleic anhydride, MA)混合並且在165 oC與OBC混練,以製成OBC-g-MA,再與己二胺(Hexamethylenediamine, HMDA)反應製成OBC-g-HMDA,最後將OBC、OBC-g-MA、OBC-g-HMDA與TPU在200 oC下,混練製成OBC/TPU、OBC-g-MA/TPU與OBC-g-HMDA/TPU。

由傅立葉轉換紅外線光譜儀(Fourier transform infra-red spectroscopy)分析中可以發現,MA確實接枝於OBC上;當摻入HMDA後,MA則會開環與HMDA反應而產生新的特徵峰。由X光繞射分析儀(X-ray diffraction system) 的測試中,OBC改質後雖然改善了合膠的相容性,但並無出現其他的繞射峰,表示結晶型態並無改變。從穿透式電子顯微鏡(Transmission electon microscope)的照片中,顯示了改質後的系統具有較好的分散性與相容性。在熱性質方面也利用示差掃描熱卡計(Differential scanning calorimetry)與熱重分析儀(Thermo gravimetric analyzer)進行熱性質的分析,經由DSC測試的結果顯示改質後的系統,OBC的結晶溫度較未改質OBC/TPU系統高約1~2度;經由TGA測試的結果,其改質後系統的熱穩定性明顯高於未改質系統。在拉伸測試方面,改質後的系統,無論在拉伸強度與楊氏係數都高於未改質OBC/TPU系統。

The Olefin block copolymer (OBC) was pre-mixed with 0.2 phr dicumyl peroxide (DCP), 1.5 phr maleic anhydride (MA) and 0.5 phr hexamethylenediamine (HMDA) to form OBC-g-HMDA and OBC-g-MA at 165 oC Then, variable amounts of OBC, OBC-g-MA and OBC-g-HMDA were mixed with TPU at 200 oC to prepare OBC/TPU, OBC-g-MA/TPU and OBC-g-HMDA/TPU blends, respectively.

The results of FT-IR (Fourier transform infra-red spectroscopy) suggested that MA and HMDA were essentially grafted on OBC. The results from XRD (X-ray diffraction) experiments revealed that all blends with or without modification displayed similar diffraction patterns, indicating that the modification didn’t cause a visible change in the crystalline structure. TEM (Transmission electron microscope) images showed that the OBC-g-MA/TPU blends displayed significantly finer morphology. And the reduced particle size in the dispersed phase was better than that of OBC/TPU blends. From the result of DSC (Differential scanning calorimetry), the crystallization temperature of OBC increased 1 to 2 oC for OBC-g-MA/TPU blends in comparison with OBC/TPU blends due to TPU induced nucleation effect from TPU under enhanced specific interaction between OBC-g-MA and TPU. The result of TGA (Thermo gravimetric analyzer) revealed that the modified systems showed higher thermal stability than the unmodified systems over the investigated temperature range due to the enhanced interaction through inter-bonding and the usage of functionalized OBC. From tensile test, the tensile strength and Young’s modulus were higher for modified systems than those for OBC/TPU blends.

目錄
摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究方向 2
第二章 文獻回顧 3
2-1熱塑性彈性體簡介 3
2-2烯烴嵌段共聚物 4
2-3 熱塑性聚胺酯 6
2-4 合膠材料 7
2-5 合膠材料相關研究 8
第三章 實驗部份 25
3-1 實驗材料 25
3-2 實驗設備與儀器 27
3-3 實驗步驟與流程 29
3-4 樣品製備 30
3-4-1 混練 30
3-4-2 熱壓試片 33
3-5 OBC與TPU之反應機構[8-9] 34
3-6 化學結構分析 36
3-6-1 Grafting percentage 36
3-6-2 FT-IR 37
3-6-3 Gel content 38
3-7 微結構分析 39
3-7-1 XRD 39
3-7-2 TEM 40
3-8 熱性質分析 41
3-8-1 DSC 41
3-8-2 Thermal conductivity 42
3-8-3 TGA 43
3-8-4 DMA 44
3-9 機械性質測試 45
3-9-1 Tensile test 45
第四章 結果與討論 46
4-1 化學結構分析 46
4-1-1 Grafting percentage 46
4-1-2 FT-IR 48
4-2 微觀結構分析 52
4-2-1 XRD 52
4-2-2 TEM 56
4-3 熱性質分析 67
4-3-1 DSC 67
4-3-2 TGA 78
4-4 機械性質分析 83
4-4-1 Tensile test 83
第五章 結論 88
參考文獻 90


圖目錄
Fig. 2-1 Depiction of the likely chain shuttling mechanism in a single reactor, dual catalyst approach[4] 5
Fig. 2-2 G' as a function of frequency for the TPU/POE binary blends with different compositions at 200 oC[8] 9
Fig. 2-3 Relationship of G’, G’’, and ω for (a) POE-g-MAH and POE-g-NH2 and (b) the TPU/POE (90/10), TPU/POE-g-MAH (90/10), and TPU/POE-g-NH2 (90/10) binaryblends at 200 oC[8] 10
Fig. 2-4 Plots of G’ with ω for the (a) TPU/POE-g-MAH and (b) TPU/POE-g-NH2 binary blends with different compositions at 200 oC[8] 10
Fig. 2-5 SEM micrographs of cryo-fracture surface of (a)TPU/POE (80/20) and (b) TPU/POE (70/30) blends[9] 12
Fig. 2-6 SEM micrographs of the cryo-fracture surface of (a) TPU/POE/POE-g-MA (80/20/5) and (b) TPU/POE/POE-g-NH2 (80/20/5) blends[9] 12
Fig. 2-7 SEM micrograph of the room-temperature fractured surface of the composites: (a) wood-flour/PP composite without compatibilizer, (b) wood-flour/PP composite with MAH-g-PP, (c) wood-flour/PP composite with VTMS-g-PP, and (d) wood-flour/PP composite with MAH/VTMS-g-PP[11] 15
Fig. 2-8 FT-IR spectra for PP-g-MA/HMDA and PP-g-MA/HEDA blends at different diamine/MA molar ratios[12] 17
Fig. 2-9 Scanning electron micrographs of the TPU/PP-g-MA, TPU/PP-g-NH2 and TPU/PP-g-NHR blends (30/70 by weight). Both secondary electron image for topology (left) and backscattered electron image for phase contrast (right; note: TPU, white; PP, black) are presented. (a) TPU/PP-g-MA; (b) TPU/PP-g-NH2; (c) TPU/PP-g-NHR[13] 19
Fig. 2-10 Variation of (a) grafting percentage and (b) gel yield with reaction time for POE 8003 at 10 wt% MAH and different BPO loading[14] 21
Fig. 2-11 Effect of MAH loading on the (a) grafting percentage and (b) gel yield for POE 8003 at 0.3 wt% BPO at various reaction times[14] 21
Fig. 3-1 DMA測試的Tension夾具[23] 44
Fig. 3-2 Tensile test specimen of ISO 37 typeⅢ 45
Fig. 4-1-1 Variation of grafting percentage with reaction time for OBC at 1.5 phr MA and different DCP loading 47
Fig. 4-1-2 FT-IR spectra of OBC and OBC-g-MA (450~4000 cm-1) 49
Fig. 4-1-3 FT-IR spectra of OBC and OBC-g-MA (1200~2500 cm-1) 49
Fig. 4-1-4 FT-IR spectra of OBC/TPU (80/20), OBC-g-MA/TPU (80/20), OBC-g-HMDA/TPU (80/20) and TPU blends (450~4000 cm-1) 50
Fig. 4-1-5 FT-IR spectra of OBC/TPU (80/20), OBC-g-MA/TPU (80/20), OBC-g-HMDA/TPU (80/20) and TPU blends (1200~2500 cm-1) 50
Fig. 4-1-6 FT-IR spectra of OBC/TPU (50/50), OBC-g-MA/TPU (50/50), OBC-g-HMDA/TPU (50/50) and TPU blends (450~4000 cm-1) 51
Fig. 4-1-7 FT-IR spectra of OBC/TPU (50/50), OBC-g-MA/TPU (50/50), OBC-g-HMDA/TPU (50/50) and TPU blends (1200~2500 cm-1) 51
Fig.4-2-1 X-ray patterns of OBC/TPU (2θ=10°~35°) 54
Fig.4-2-2 X-ray patterns of OBC-g-MA/TPU (2θ=10°~35°) 54
Fig.4-2-3 X-ray patterns of OBC-g-HMDA/TPU (2θ=10°~35°) 55
Fig.4-2-4 X-ray patterns of OBC/TPU (50/50), OBC-g-MA/TPU (50/50) and OBC-g-HMDA/TPU (50/50) blends (2θ=10°~35°) 55
Fig. 4-2-5 TEM photos of OBC/TPU at magnification 5k 57
Fig. 4-2-6 TEM photos of OBC/TPU at magnification 10k 58
Fig. 4-2-7 TEM photos of OBC-g-MA/TPU at magnification 5k 59
Fig. 4-2-8 TEM photos of OBC-g-MA/TPU at magnification 10k 60
Fig. 4-2-9 TEM photos of OBC-g-HMDA/TPU at magnification 5k 61
Fig. 4-2-10 TEM photos of OBC-g-HMDA/TPU at magnification 10k 62
Fig. 4-2-11 TEM photos of OBC/TPU and OBC-g-MA/TPU at magnification 5k 63
Fig. 4-2-12 TEM photos of OBC/TPU and OBC-g-MA/TPU at magnification 10k 64
Fig. 4-2-13 TEM photos of OBC/TPU, OBC-g-MA/TPU and OBC-g-HMDA/TPU at magnification 5k 65
Fig. 4-2-14 TEM photos of OBC/TPU, OBC-g-MA/TPU and OBC-g-HMDA/TPU at magnification 10k 66
Fig. 4-3-1 DSC curves of TPU under 10 oC/min heating rate 71
Fig. 4-3-2 DSC curves of OBC/TPU under 20 oC/min heating rate 71
Fig. 4-3-3 DSC curves of OBC/TPU under 10 oC/min cooling rate 72
Fig. 4-3-4 DSC curves of OBC/TPU under 20 oC/min cooling rate 72
Fig. 4-3-5 DSC curves of OBC-g-MA/TPU under 20 oC/min heating rate 73
Fig. 4-3-6 DSC curves of OBC-g-MA/TPU under 10 oC/min cooling rate 73
Fig. 4-3-7 DSC curves of OBC-g-MA/TPU under 20 oC/min cooling rate 74
Fig. 4-3-8 DSC curves of OBC-g-HMDA/TPU under 20 oC/min heating rate 74
Fig. 4-3-9 DSC curves of OBC-g-HMDA/TPU under 10 oC/min cooling rate 75
Fig. 4-3-10 DSC curves of OBC-g-HMDA/TPU under 20 oC/min cooling rate 75
Fig. 4-3-11 DSC curves of OBC/TPU (50/50), OBC-g-MA/TPU (50/50) and OBC-g-HMDA/TPU (50/50) under 10 oC/min cooling rate 76
Fig. 4-3-12 DSC curves of OBC/TPU (50/50), OBC-g-MA/TPU (50/50) and OBC-g-HMDA/TPU (50/50) under 20 oC/min cooling rate 76
Fig. 4-3-13 DSC curves of OBC/TPU (50/50), OBC-g-MA/TPU (50/50) and OBC-g-HMDA/TPU (50/50) under 20 oC/min cooling rate 77
Fig. 4-3-14 DSC curves of OBC/TPU (50/50), OBC-g-MA/TPU (50/50) and OBC-g-HMDA/TPU (50/50) under 20 oC/min cooling rate 77
Fig. 4-3-15 TGA curve of OBC/TPU composites 80
Fig. 4-3-16 TGA curve of OBC-g-MA/TPU composites 80
Fig. 4-3-17 TGA curve of OBC-g-HMDA/TPU composites 81
Fig. 4-3-18 TGA curve of OBC/TPU, OBC-g-MA/TPU and OBC-g-HMDA/TPU composites in 5 wt % loss 81
Fig. 4-3-19 TGA curve of OBC/TPU, OBC-g-MA/TPU and OBC-g-HMDA/TPU composites in 50 wt % loss 82
Fig. 4-4-1 Stress-strain curves of OBC/TPU 85
Fig. 4-4-2 Stress-strain curves of OBC-g-MA/TPU 85
Fig.4-4-3 Stress-strain curves of OBC-g-HMDA/TPU 86
Fig. 4-4-4 Tensile strength of OBC/TPU, OBC-g-MA/TPU and OBC-g-HMDA/TPU blends 86
Fig. 4-4-5 Elongation at break of OBC/TPU, OBC-g-MA/TPU and OBC-g-HMDA/TPU blends 87
Fig. 4-4-6 Young’s modulus of OBC/TPU, OBC-g-MA/TPU and OBC-g-HMDA/TPU blends 87


表目錄
Table 2-1 Effect of the new compatibilizers and Irradiation dose on the mechanical properties[11] 15
Table 2-2 Tensile properties of ester–TPU based blends[17] 24
Table 3-1 Formulation of OBC/TPU, OBC-g-MA/TPU and OBC-g-HMDA/TPU blends 32
Table 4-3-1 Crystallization temperature and melt temperature of OBC/TPU, OBC-g-MA/TPU and OBC-g-HMDA/TPU blends 69
Table 4-3-2 Crystallinity of OBC/TPU, OBC-g-MA/TPU and OBC-g-HMDA/TPU blends 70
Table 4-3-3 Temperature of weight lost and ash content 79
Table 4-4-1 Tensile test results of OBC/TPU, OBC-g-MA/TPU and OBC-g-HMDA/TPU composites 84


1.Legge, N. R.; Holden, G.; Schroeder, H. E. “Thermoplastic elastomers: A comprehensive review” Carl Hansser Verslag, New York (1987)
2.Mark, H. F. “Encyclopedia of polymer science and technology 3 ed.” Wiley-Interscience, New York (2001)
3.王俊凱, “以溶膠-凝膠法製備熱塑性聚胺基甲酸酯/二氧化矽混成材料之研究” 中國文化大學 奈米材料所 碩士論文 (2002)
4.Arriola, D. J.; Carnahan, E. M.; Hustad, P. D.; Kuhlman, R. L.; Wenzel, T. T. “Catalytic production of olefin block copolymers via chain shuttling polymerization” Science, 312, 714-719 (2006)
5.李佩玟, “以 TPU@silica 改質聚乳酸生質複合材料之性質研究” 國立宜蘭大學化學工程與材料工程學系碩士論文 (2010)
6.藍玉淇, “形狀記憶 PLA/TPU 生質合膠之研究” 國立宜蘭大學化學工程與材料工程學系碩士論文 (2011)
7.洪堃哲, “顏料複合材料 II. mPE/PLA 合膠” 國立宜蘭大學化學工程與材料工程學系碩士論文 (2011)
8.Yang, J.; Chen, X.; Fu, R.; Chen, H.; Wang, J. “Dynamic rheological and morphological study of the compatibility of thermoplastic polyurethane/ethylene-octene copolymer blends” J. Appl. Polym. Sci., 109, 3452-3457 (2008)
9.Wang, J. S.; Chen, X. D.; Mai, B. Y.; Zhang, M. Q.; Rong, M. Z. “Localized compatibilization in immiscible blends of thermoplastic polyurethane and ethylene-octylene copolymer” J. Appl. Polym. Sci., 105, 1309-1315 (2007)
10.Wu, J.-Y.; Wu, T.-M.; Chen, W.-Y.; Tsai, S.-J.; Kuo, W.-F.; Chang, G.-Y. “Preparation and characterization of PP/clay nanocomposites based on modified polypropylene and clay” J. Polym. Sci., 43, 3242-3254 (2005)
11.Guo, L.; Li, B.; Wang, H. “Effect of maleic anhydride/ vinyltrimethoxysilane-co-grafting polypropylene on the properties of wood-flour/polypropylene composites by electron-beam preirradiation” J. Appl. Polym. Sci., 121, 402-409 (2011)
12.Lu, Q.-W.; Macosko, C. W. “Promoting adhesion to thermoplastic polyurethane (TPU) by amine functional polypropylenes” Polym. Mater. Sci. Eng., 89, 844-847 (2003)
13.Lu, Q.-W.; Macosko, C. W. “Comparing the compatibility of various functionalized polypropylenes with thermoplastic polyurethane (TPU)” Polymer, 45, 1981-1991 (2004)
14.Wu, C.-S.; Liao, H.-T.; Lai, S.-M. “Study on the graft reaction of maleic anhydride onto metallocene-based polyethylene–octene elastomer” Polym. plast. Technol. Eng., 41, 645-661 (2002)
15.Ares, A.; Pardo, S. G.; Abad, M. J.; Cano, J.; Barral, L. “Effect of aminomethoxy silane and olefin block copolymer on rheomechanical and morphological behavior of fly ash-filled polypropylene composites” Rheol. Acta., 49, 607-618 (2010)
16.Kannan, M.; Bhagawan, S. S.; Joseph, K.; Thomas, S. “Thermomechanical behavior of nanoclay filled TPU/PP blends” e-Polymer, 133 (2008)
17.Kannan, M.; Bhagawan, S. S.; Jose, T.; Thomas, S.; Joseph, K. “Effect of sequence of nanoclay addition in TPU/PP blends: thermomechanical properties” J. Mater. Sci., 45, 1078-1085 (2010)
18.Gaylord, N. G.; Mehta, R.; Kumar, V.; Tazi, M. “High-density polyethylene-g-maleic anhydride preparation in presence of electron-donors” J. Appl. Polym. Sci., 38, 359-371 (1989)
19.Li, H. M.; Chen, H. B.; Shen, Z. G.; Lin, S. G. “Preparation and characterizeation of maleic anhydride-functionalized syndiotactic polystyrene” Polymer, 43, 5455-5461 (2002)
20.Park, H. E.; Dealy, J. M.; Marchand, G. R.; Wang, J. A.; Li, S.; Register, R. A. “Rheology and structure of molten, olefin multiblock copolymers” Macromolecules, 43, 6789-6799 (2010)
21.Wang, H. P.; Chum, S. P.; Hiltner, A0; Baer, E. “Deformation of elastomeric polyolefin spherulites” J. Polym. Sci. Part B: Polym. Phys., 47, 1313-1330 (2009)
22.葉恒伸, “聚丙烯奈米石墨功能性複材” 東海大學化學工程與材料工程學系碩士論文 (2011)
23.楊程皓, “茂金屬聚乙烯相容劑於無機顆粒填充之環保複合材料補強研究” 中國文化大學工學院材料科學與奈米科技研究所 (2009)
24.Bikiaris, D. N.; Vassiliou, A.; Pavlidou, E.; Karayannidis, G. P. “Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing” Eur. Polym. J., 41, 1965-1978 (2005)
25.Lai, S.; Ti, K. “Preparation and properties of metallocene-catalyzed PE/ Starch nanocomposites:role of nanocompatibilizer” Polymer, 22, 502-511 (2007)
26.Lu, Q. W.; Macosko, C. W.; Horrion, J. “Melt amination of polypropylenes” J. Polym. Sci., Part A: Polym. Chem., 43, 4217-4232 (2005)
27.Kavesh, S.; Schultz, J. M. “Lamellar and interlamellar structure in melt-crystallized polyethylene. I. Degree of crystallinity, atomic positions, particle size, and lattice disorder of the first and second kinds” J. Polym. Sci. Polym. Phys., 8, 243-276 (1970)
28.Chiu, F.-C.; Lai, S.-M.; Ti, K.-T. “Characterization and comparison of metallocene-catalyzed polyethylene/thermoplastic starch blends and nanocomposites” Polym. Test., 28, 243-250 (2009).
29.Culin, J.; Smit, I.; Veksli, Z.; Anzlovar, A.; Zigon, M. “Phase morphology of functionalized polyester polyurethanes. Effect of functional group concentration” Polym. Int., 55, 285-291 (2006)
30.Gonzaleznunez, R; Favis, B. D.; Carreau, P. J. “Factors influencing the formation of elongated morphologies in immiscible polymer blends during melt processing” Polym. Eng. Sci., 33, 851-859 (1993)
31.Chiu, F.-C.; Lai, S.-M.; Li, H.-C.; Chen, C.-C. “Characterization of Nylon 6/ABS blends with and without a maleated polybutadiene as compatibilizer” J. Polym. Research, 18, 627-635 (2011)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top