跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何松諺
研究生(外文):Ho Sung-Yen
論文名稱:低加壓高阻力運動對肌肉增生生化指標及運動表現之影響
論文名稱(外文):The Effect of Low Vascular Occlusion Combined with High-Intensity Resistance Exercise on Muscle Hyperplasia and Inflammatory Markers and Exercise Performance
指導教授:吳慧君吳慧君引用關係
指導教授(外文):Wu, Huey-June
口試委員:江界山陳裕鏞
口試委員(外文):Chiang, JassonChen, Yue-Yawn
口試日期:2012-06-29
學位類別:碩士
校院名稱:中國文化大學
系所名稱:體育學系運動教練碩博士班
學門:民生學門
學類:競技運動學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:44
中文關鍵詞:肌肉損傷最大肌力加壓訓練
外文關鍵詞:muscle damagemaximal strengthocclusion training
相關次數:
  • 被引用被引用:0
  • 點閱點閱:351
  • 評分評分:
  • 下載下載:96
  • 收藏至我的研究室書目清單書目收藏:0
目的:探討加壓阻力訓練對角力運動員肌肉量、肌肉增生激素、肌肉發炎指標、最大肌力及左右敏捷性之影響。研究方法: 14名角力專項運動員(年齡:20.4 ± 1.3歲;身高:169.6 ± 6.4公分;體重:76.8 ± 17.3公斤),進行3週加壓阻力運動訓練,每週進行3天,一天5組,每組12次,組間休息1分鐘,運動強度為70% 1RM,加壓壓力以每位受試者的0.7倍收縮壓,於運動前、中、後採取肌肉增生激素 (IGF-1),並於運動前及每週運動後採集肌肉發炎指標。結果:無論是否有加壓的介入,受試者之肌肉量均有顯著增加之情形 (加壓前測:9.5 ± 1.27,加壓後測9.6 ± 1.25:未加壓前測:9.5±1.33 未加壓後測:9.7±1.36 kg, p<.05);肌肉增生激素IGF-1於訓練前、中、後皆無顯著差異(p>.05);肌肉發炎指標方面,CK及GOT皆無顯著差異 (P>.05),CK-MB第二週及第三週之活性顯著高於前測 (前測:6.5 ± 4.53,第一週:10.2 ± 11.09,第二週:11.6 ± 1.94,第三週:11.2 ± 3.28 U/L, p<.05),GPT第二週活性顯著高於第三週 (前測:9.8 ± 6.43,第一週:12.6 ± 7.71,第二週:17.5 ± 10.05,第三週:11.2 ± 5.40 U/L, p<.05),而LDH第一週之活性則顯著高於第二週 (前測:164.2 ± 29.30,第一週:190.4 ± 54.19,第二週:152.9 ± 18.60,第三週:11.2 ± 3.28 U/L, p<.05);最大等長收縮及最大等速收縮之肌力,於運動訓練後皆顯著低於運動訓練前 (p<.05)。另外,三週的實驗處理後,受試者之乳酸閾值有顯著增加的情形 (前測:36.9 ± 10.43,後測:45.5 ± 7.80 ml∙kg-1 ∙min-1, p<.05),而最大攝氧量有些微的降低,但在統計上則無差異。結論:三週加壓阻力運動訓練對肌肉增生指標沒有影響,最大肌力值呈現下降的情形。另外,受試者的乳酸閾值有顯著改善,且腿部肌肉量有顯著之進步。
Purpose: The aim of this study was to investigate the effect of resistance exercise combined occlusion training on wrestling athletes’ muscle mass, muscle hyperplasia, inflammatory markers, maximal voluntary contraction and agility test. Method: Fourteen wrestling athletes (age:20.4 ± 1.3yrs;height:169.6 ± 6.4cm;weight:76.8 ± 17.3kg) were recruited in this study to perform bilateral leg extension for 3 weeks, 3 days per week and 5 sets, 12 repetitions with 1minute rest among all sets each day. The intensity was 70% 1RM with low occlusion pressure (0.7SBP). The muscle hyperplasia blood sample were collected prior to, during and after exercise. The inflammatory markers were collected before and every week after training. Result:No matter occlusion or not, a significant increased in the muscle mass (occlusion-pre:9.5 ± 1.27, occlusion-post:9.6 ± 1.25, No occlusion-pre:9.5±1.33, No occlusion-post:9.7 ± 1.36 kg, p<.05).There was no significant difference in IGF-1 in the test (p>.05). The inflammatory marker of CK and GOT were the same result (p>.05). CK-MB was higher at second and third week than pre (pre:6.5 ± 4.53,week-1:10.2 ± 11.09,week-2:11.6 ± 1.94,week-3:11.2 ± 3.28 U/L, p<.05). GPT was higher at second week than third week (pre:9.8 ± 6.43,week-1:12.6 ± 7.71,week-2:17.5 ± 10.05,week-3:11.2 ± 5.40 U/L, p<.05), and LDH was higher at first week than second week(pre:164.2 ± 29.30,week-1:190.4 ± 54.19,week-2:152.9 ± 18.60,week-3:11.2 ± 3.28 U/L, p<.05). The maximal voluntary contraction of isokinetic and isometric were lower after occlusion training (p<.05). In addition, the lactate threshold was higher after the training (pre:36.9 ± 10.43,post:45.5 ± 7.80 ml∙kg-1 ∙min-1, p<.05) and the VO2max was no significant difference (p>.05). Conclusion: The mode of low occlusion pressure combined with high intensity resistance exercise induce higher in lactate threshold and muscle mass, but the maximal voluntary contraction was lower after training. And the muscle hyperplasia was no change.
目 次

第壹章 緒論
第一節 研究背景 …………………………………………………………………………… 1
第二節 研究目的 …………………………………………………………………………… 3
第三節 研究假設 …………………………………………………………………………… 4
第四節 研究限制 …………………………………………………………………………… 4
第五節 名詞操作性定義 …………………………………………………………………… 5
第貳章 文獻探討
第一節 加壓運動訓練 ……………………………………………………………………… 6
第二節 肌肉發炎指標及增生激素 ………………………………………………………… 8
第參章 研究方法與步驟
第一節 研究對象 ……………………………………………………………………………11
第二節 實驗時間與地點 ……………………………………………………………………11
第三節 實驗儀器與設備 ……………………………………………………………………12
第四節 實驗設計 ……………………………………………………………………………14
第五節 資料處理與統計分析 ………………………………………………………………20
第肆章 結果
第一節 受試者基本資料 ……………………………………………………………………21
第二節 低加壓高阻力運動對肌肉增生激素及發炎指標之影響 …………………………22
第三節 低加壓高阻力運動對無氧閾值、最大攝氧量、最大肌力及
敏捷性表現之影響 …………………………………………………………………25
第四節 低加壓高阻力運動對腿部肌肉量及脂肪量之影響 ………………………………28

第伍章 討論與結論
第一節 討論 …………………………………………………………………………………29
第二節 結論 …………………………………………………………………………………31
第三節 建議 …………………………………………………………………………………32
引用文獻 33
附錄一……………………………………………………………………………………………41
附錄二……………………………………………………………………………………………42
附錄三……………………………………………………………………………………………43












圖 次

圖 3.3.1 等速肌力測試儀 ………………………………………………………………………12
圖 3.3.2 生物電阻身體組成分析儀 ……………………………………………………………12
圖 3.3.3 攜帶式數據測量儀 ……………………………………………………………………13
圖 3.3.4全自動模組生化免疫分析儀 ………………………………………………………… 13
圖 3.3.5 乳酸分析儀 ……………………………………………………………………………13
圖 3.3.6心肺功能測試儀 ……………………………………………………………………… 13
圖 3.4.1 受試者接受加壓阻力訓練之情形 ……………………………………………………15
圖 3.4.2 加壓訓練之採血流程圖 ………………………………………………………………16
圖 3.4.3 實驗流程圖 ……………………………………………………………………………17
圖 4.2.1 訓練前、中、後肌肉增生指標之變化情形………………………………………… 22
圖 4.2.2 實驗處理中發炎指標CK及LDH各階段之變化情形 …………………………………23
圖 4.2.3 實驗處理中發炎指標CK-MB、GOT及GPT各階段之變化情形………………………24
圖 4.3.1 乳酸閾值與最大攝氧量之前、後測變化情形……………………………………… 27







表 次

表 4-1-1 受試者基本資料表 ………………………………………………………………… 21
表 4-2-1 受試者在實驗處理前、中、後之肌肉增生指標之變化情形……………………… 22
表 4-2-2 受試者在實驗處理中各階段發炎指標之變化情形 …………………………………23
表 4-3-1 比較受試者在實驗處理中加壓及未加壓介入之最大肌力、
達峰值時間及敏捷性測試之變化 ………………………………………………………25
表 4-3-2 受試者在實驗處理前、後 非慣用腳及慣用腳最大肌力、
最大力矩峰值時間及敏捷性測試之變化 ………………………………………………26
表 4-3-3 乳酸閾值與最大攝氧量之前、後測數值 ……………………………………………26
表 4-4-1 運動訓練前、後之腿部肌肉量與脂肪量…………………………………………… 28


高藤曉子、賴麗雲 (2006)。加壓肌力訓練法。國民體育季刊,35(3),65-72。
黃國欽、邱亦涵與何采蓉 (2009)。在長期訓練下不同運動項目在急性期蛋白、
肝功能及細胞激素之變化。運動教練科學,13,81-91。

Abe, T., Yasuda, T., Midorikawa, T., Sato, Y., Kearns, C. F., Inoue, K., Koizumi, K., Ishii, N. (2005). Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training. International Journal of KAATSU training Research. 1, 6-12.
Abe, T., Kearns, C., & Sato, Y. (2006). Muscle size and strength are increased
following walk training with restricted venous blood flow from the leg muscle,
Kaatsu-walk training. Journal of Applied Physiology, 100, 1460–1466.
ACSM. (2009). American College of Sports Medicine position stand. Progression
models in resistance training for healthy adults. Medicine amd Science in Sports
and Exercise, 41,687–708.
Al-Hadi, H. A., & Fox, K. A. (2009). Cardiac markers in the early diagnosis and management of patients with acute coronary syndrome. Sultan Qaboos University Medical Journal, 9(3), 231-246.
Apple, F. S., & Rhodes, M. (1988). Enzymatic estimation of skeletal muscle damage by analysis of changes in serum creatine kinase. Journal of Applied Physiology, 65,2598–600.
Brooks, N., Layne, J. E., Gordon, P. L., Roubenoff, R., Nelson, M. E., &
Castaneda-Sceppa, C. (2006). Strength training improves muscle quality and
insulin sensitivity in Hispanic older adults with type 2 diabetes. International
Journal of Medical Sciences, 4(1), 19-27.
Campos, G. E., Luecke, T. J., Wendeln, H. K., Toma, K., Hagerman, F. C., Murray,
T. F., ...Staron, R. S. (2002). Muscular adaptations in response to three different
resistance-training regimens:specificity of repetition maximum training zone.
European Journal of Applied Physiology and Occupational Physiology, 88(1-2),
50-60.
Castaneda, F., Layne, J. E., & Castaneda, C. (2006). Skeletal muscle sodium glucose
co-transporters in older adults with type 2 diabetes undergoing resistance training. International Journal of Medical Sciences, 3(3), 84–91.
Chakravarthy, M. V., Davis, B. S., & Booth, F. W. (2000). IGF-I restores satellite cell
proliferative potential in immobilized old skeletal muscle. Journal of Applied
Physiology, 89, 1365–1379.
Chakravarthy, M. V., Booth, F. W., & Spangenburg, E. E. (2001). The molecular responses of skeletal muscle satellite cells to continuous expression of IGF-1: implications for the rescue of induced muscular atrophy in aged rats. International Journal of Sport Nutrition and Exercise Metabolism, 11, S44– S48.
Chakravarthy, M. V., Abraha, T. W., Schwartz, R. J., Fiorotto, M. L., & Booth,
F.W. (2000). Insulin-like growth factor-I extends in vitro replicative life span of
skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the
activation of phosphatidylinositol 3V-kinase/Akt signaling pathway. The Journal
of Biological Chemistry, 275, 35942– 35952.
Clark, B. C., Fernhall, B., & Ploutz-Snyder, L. L. (2006). Adaptation in human
neuromuscular function following prolonged unweighting:I. Skeletal muscle
contractile properties and applied ischemia efficacy. Journal of Applied
Physiology, 101(1), 256-263.
Clarkson, P. M., Kearns, A. K., Rouzier, P., Rubin, R., & Thompson, P. D. (2006).
Serum creatine kinase levels and renal function measures in exertional muscle
damage. Medicine and Science in Sports and Exercise, 38(4), 623–627.
Coleman, M. E., DeMayo, F., Yin, K. C., Lee, H. M., Geske, R., Montgomery, C., & Schwartz, R. J. (1995). Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. The Journal of Biological Chemistry, 270, 12109–12116.
Cook, S. B., Brown, K. A., Deruisseau, K., Kanaley, J. A., & Ploutz-Snyder,
L. L. (2010). Skeletal muscle adaptations following blood flow-restricted
training during 30 days of muscular unloading. Journal of Applied Physiology,
109(2), 341-349.
Dufour, D. R., Lott, J. A., Nolte, F. S., Gretch, D. R., Koff, R. S., & Seeff, L. B. (2000). Diagnosis and monitoring of hepatic injury. I. Performance characteristics of laboratory tests. Clinical Chemistry, 46, 2027–2049.
Flynn, M. G., Pizza, F. X., Boone, J. B. Jr., Andres, F. F., Michaud T. A., &
Rodriguez-Zayas, J. R. (1994). Indices of training stress during competitive
running and swimming seasons. International Journal of Sports Medicine, 15,
21–26.
Fujita, T., Brechue, W.F., Kurita, K., Sato, Y., & Abe, T. (2008). Increased muscle volume and strength following six days of low-intensity resistance training with restricted muscle blood flow. International Journal of KAATSU Training Research, 4, 1-8.
Gale, C. R., Martyn, C. N., Cooper, C., & Sayer, A. A. (2007). Grip strength, body
composition, and mortality. International Journal of Epidemiology, 36(1),
228–235.
Gill, N. D., Beaven, C. M., & Cook, C. (2006). Effectiveness of post-match recovery
strategies in rugby players. British Journal of Sports Medicine, 40(3), 260–263.
Helaly, G. F., Hussein, N. G., Refai, W., & Ibrahim, M. (2011). Relation of serum
insulin-like growth factor-1 (IGF-1) levels with hepatitis C virus infection and
insulin Resistance. Translational Research, 158(3), 155-162.
Jones, J. I., & Clemmons, D. R. (1995). Insulin-like growth factors and their binding
proteins: biological actions. Endocrine Reviews, 16, 3–34.
Jurca, R., Lamonte, M. J., Church, T. S., Earnest, C. P., Fitzgerald S. J., Barlow C.
E., ….Blair, S. N. (2004). Associations of muscle strength and fitness with
metabolic syndrome in men. Medicine and Science in Sports and Exercise, 36(8),
1301–1307.
Jurca, R., Lamonte, M. J., Barlow, C. E., Kampert, J. B., Church, T. S., & Blair, S. N.
(2005). Association of muscular strength with incidence of metabolic syndrome
in men. Medicine and Science in Sports and Exercise, 37(11), 1849–1855.
Koutedakis, Y., Raafat, A., Sharp, N. C., Rosmarin, M. N., Beard, M. J. & Robbins, S. W. (1993). Serum enzyme activities in individuals with different levels of physical fitness. The Journal of Sports Medicine and Physical Fitness, 33, 252–257.
Kraemer, R. R., Durand, R. J., Acevedo, E. O., Johnson, L. G., Kraemer, G. R.
Hebert, E. P., & Castracane, V. D. (2004). Rigorous running increases growth
hormone and Insulin-like growth factor-I without altering Ghrelin. Experimental
Biology and Medicine, 229(3), 240-246.
Kubota, A., Sakuraba, K., Koh, S., Ogura, Y., & Tamura, Y. (2011). Blood flow
restriction by low compressive force prevents disuse muscular weakness. Journal
of Science and Medicine in Sport, 14(2), 95-99.
Lin, J. D., Lin, P. Y., Chen, L. M., Fang, W. H., Lin, L. P., & Loh C. H. (2010). Serum glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) levels in children and adolescents with intellectual disabilities. Research In Developmental Disabilities, 31, 172-177.
Le Roith, D. (1997). Insulin- Like Growth Factors. The New England Journal of
Medicine, 336, 633-640.
Lo, K. R., Hurst, S. M., Atkinson, K. R., Vandenbogaerde, T., Beaven, C. M., &
Ingram, J. R. (2010). Development and validation of a sensitive immunoassay
for the skeletal muscle isoform of creatine kinase. Journal of Science and
Medicine in Sport, 13,117-119.
Malik, S., Wong, N. D., Franklin, S. S., Kamath, T. V., Litalient, G. J., Pio, J. R., Williams, G. R. (2004). Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation, 110(10), 1245–50.
Manenti, E. R., Bodanese, L.C., Camey, S. A., & Polanczyk, C. A. (2006). Prognostic
value of serum biomarkers in association with TIMI risk score for acute coronary
syndromes. Clinical Cardiology, 29 (9), 405–410.
Martinez-Amat, A., Boulaiz, H,. Prados, J., Marchal, J. A., Padial, P. P., Caba, O.,…Aránega, A. (2005). Release of alphaactin into serum after skeletal muscle damage. British Journal of Sports Medicine, 39(11), 830–834.
Mashiko, T., Umeda, T., Nakaji, S., & Sugawara, K. (2004). Effects of exercise on the
physical condition of college rugby players during summer training camp.
British Journal of Sports Medicine, 38(2), 186-190.
Meyer, R. (2006). Does blood flow restriction enhance hypertrophic signaling in
skeletal muscle? Journal of Applied Physiology, 100, 1443–1444.
Musaro, A., & Rosenthal, N. (2002). The role of local insulin-like growth factor-1
isoforms in the pathophysiology of skeletal muscle. Current Genomics, 3,
149–162.
Newman, A. B., Kupelian, V., Visser, M., Simonsick, E. M., Goodpaster, B. H.
Kritchevsky, S. B. … Harris, T. B. (2006). Strength, but not muscle mass, is
associated with mortality in the health, aging and body composition study cohort.
The Journal of Gerontology Series A: Biological Science and Medical Science,
61(1), 72–7.
Park, S., Kim, J. K., Choi, H. M., Kim, H. G., Beekley, M. D., & Nho, H. (2010).
Increase in maximal oxygen uptake following 2-week walk training with blood f
low occlusion in athletes. European Journal of Applied Physiology, 109(4),
591-600.
Rabinovsky, E., Gelir, D. E., Gelir, S., Lui, H., Kattash, M., DeMayo, F. J.,
Shenaq, S. M., & Schwartz, R. J. (2003). Targeted expression of IGF-1 transgene
to skeletal muscle accelerates muscle and motor neuron regeneration. The
Journal of the Federation of American Societies for Experimental Biology, 17(1).
53-55.
Rommel, C., Bodine, S. C., Clarke, B. A., Rossman, R., Nunez, L.,Stitt, T. N.,…
Glass, D. J. (2001). Mediation of IGF-1-induced skeletal myotube hypertrophy
by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nature Cell Biology, 3,
1009–1013.
Sawai, S., Sanematsu, H., Kanehisa, H., Tsunoda, N., & Fukunaga, T. (2004). Evaluation of muscle activity level in daily actions. Japanese Journal of Physical Fitness and Sports Medicine, 53, 93–106.
Sato, Y. (2005). The history and future of KAATSU training. International Journal of
Kaatsu Training Research, 1, 1–5.
Schmid, C. (1995). Insulin-like growth factors. Cell Biology International, 19(5),
445-457.
Sillanpaa, E., Laaksonen, D. E., Hakkinen, A., Karavirta, L., Jensen, B., Kraemer, W. J., …Hakkinen, K. (2009). Body composition, fitness, and metabolic health during strength and endurance training and their combination in middle-aged and older women. European Journal of Applied Physiology, 106(2), 285–296.
Soos, M. A., Field, C. E., & Siddle, K. (1993). Purified hybrid insulin/insulin-like
growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochemical Journal, 290, 419–426.
St-Pierre, D. H., Wang, L., & Taché, Y. (2003). Ghrelin:A novel player in the
gut-brain regulation of growth hormone and energy balance. News in
Physiological Sciences, 18, 242-246.
Sumide, T., Sakuraba, K., Sawaki, K., Ohmura, H., & Tamura, Y. (2009). Effect of
resistance exercise training combined with relatively low vascular occlusion.
Journal of Science and Medicine in Sport, 12, 107–112.
Takarada, Y., Sato, Y., & Ishii, N. (2002). Effects of resistance exercise combined
with vascular occlusion on muscle function in athletes. European Journal of
Applied Physiology, 86, 308–314.
Takarada, Y., Takazawa, H., & Ishii, N. (2000). Application of vascular occlusion
diminish disuse atrophy of knee extensor muscles. Medicine and Science in
Sports and Exercise, 32, 2035–2039.
Takarada, Y., Takazawa, H., Sato, Y., Takebayashi, S., Tanaka, Y., & Ishii, N.
(2000). Effects of resistance exercise combined with moderate vascular
occlusion on muscle function in humans. Journal of Applied Physiology, 88,
2097–2106.
Tomi, I. H. V., Al-Qaisi, A. H. J., & Al-Qaisi, Z. H. J. (2010). Synthesis, characterization and effect of bis-1,3,4-oxadiazole rings containing glycine moiety on the activity of some transferase enzymes. Journal of King Saud University – Science, 23, 23-33.
Williams, M. A., Haskell, W. L., Ades, P. A., Amsterdam, E. A., Bittner, V., Franklin
B. A., …American Heart Association Council on Nutrition, Physical Activity,
& Metabolism. (2007). Resistance exercise in individuals with and without
cardiovascular disease: 2007 update: a scientific statement from the American
Heart Association Council on Clinical Cardiology and Council on Nutrition,
Physical Activity, and Metabolism. Circulation, 116(5), 572–84.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top