跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳少宏
研究生(外文):Wu, Shaohong
論文名稱:高加壓低阻力運動對運動員肌肉生長激素、發炎反應與運動表現之影響
論文名稱(外文):The Effect of High Vascular Occlusion Combined with Low-Intensity Resistance Exercise on Muscle Growth Hormone, Inflammation and Exercise Performance
指導教授:吳慧君吳慧君引用關係
指導教授(外文):Wu, Hueyjune
口試委員:江界山陳裕鏞
口試委員(外文):Chiang, JassonChen, Yueyawn
口試日期:2012-06-29
學位類別:碩士
校院名稱:中國文化大學
系所名稱:體育學系運動教練碩博士班
學門:民生學門
學類:競技運動學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:45
中文關鍵詞:血流限制類胰島素生長因子乳酸脫氫酶
外文關鍵詞:blood occlusionIGF-1LDH
相關次數:
  • 被引用被引用:0
  • 點閱點閱:584
  • 評分評分:
  • 下載下載:122
  • 收藏至我的研究室書目清單書目收藏:0
目的:探討高加壓 (1.7倍收縮壓 ) 搭配低阻力 ( 30% 1RM ) 運動對肌肉生長激素、肌肉發炎指標與運動表現的影響。方法:招募14名男性角力隊選手 ( 年齡:21 ± 1.2歲,身高:170.7 ± 5.5公分,體重:73.7 ± 14.8公斤 ),進行3週高加壓 + 低阻力 ( HOLR, 1.7 SBP + 30% 1RM ) 運動,以斜坐推蹬方式進行雙腿運動 ( 每週3次,共3週,每次反覆次數12次,組間休息1分鐘,共5組 );僅加壓於非慣用腳,加壓部位於大腿近端。在運動前及施行加壓訓練的每一週進行抽血,比較肌酸激酶 ( CK )、心肌性肌酸激酶 ( CK-MB )、乳酸脫氫酶 ( LDH )、麩氨基酸草醋酸轉氨基酵素 ( GOT ) 與麩氨基酸焦葡萄轉氨基酵素 ( GPT ) 之差異,及運動前、中、後之類胰島素生長因子 ( IGF-1 ) 之差異;並比較實驗處理前後對運動表現 (最大肌力、有氧能力及左右反應時間)之差異。結果: HOLR在實驗後於CK ( Pre: 147.1 ± 19.4, Week1: 361.4 ± 74.5 U/L, p < .05 )及LDH ( Pre: 163.4 ± 27.7, Week1: 199.6 ± 54.8 U/L, p < .05 ) 發炎指標僅第1週升高後,第2、3週皆持續降低,而GPT ( Pre: 9.0 ± 5.9, Week1: 10.0 ± 4.2, Week2: 18.6 ± 13.0 U/L, p < .05 ) 及CK-MB ( Pre: 5.3 ± 2.4, Week1: 7.6 ± 3.6, Week2: 12.9 ± 2.6 U/L, p < .05 )的反應升高持續到第2週,到第3週才降低;於IGF-1中並未達顯著差異;在最大等長肌力於慣用腳 ( Pre: 316.4 ± 71.7, Post: 249.1 ± 75.0 Nm, p < .05 ) 與非慣用( Pre: 293.8 ± 79.9, Post: 238.3 ± 58.3 Nm, p < .05 )皆顯著降低。結論: HOLR的運動模式引起體內肌肉損傷與增生的反應,雖產生了較大的發炎反應效果但伴隨著有肌力下降的現象,且於IGF-1中並未能觀察到顯著的差異。
Purpose: The aim of study was to investigate the effect of high vascular occlusion pressures (1.7 SBP) combined low-intensity resistance (30% 1RM) on post-exercise muscle growth hormone, inflammation and exercise performance. Methods: Fourteen wrestling team males (age: 21 ± 1.2 yrs; height: 170.7 ± 5.5 cm; weight: 73.7 ± 14.8 kg) were recruited in this study to perform bilateral leg extension (three week, three times a week, 5 sets, 12 repetitions with 1 min rest among all sets) blood occlusion only pressurized non-dominant leg. Blood samples were collected prior exercise (pre) and every week for analysis of creatine kinase (CK), creatine kinase MB (CK-MB), lactate dehydrogenase (LDH), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and exercise pre, mid and post Insulin-like Growth Factor-1 (IGF-1); the maximal voluntary contraction strength, aerobic capacity and Reaction time of compare exercise pre and post. Results: LRHO in the experiment after the CK (Pre: 147.1 ± 19.4, Week1: 361.4 ± 74.5 U / L, p <.05) and LDH (Pre: 163.4 ± 27.7, Week1: 199.6 ± 54.8 U / L, p <.05) inflammatory markers only in first week increased, after second week are continuing to reduce; GPT (Pre: 9.0 ± 5.9, Week1: 10.0 ± 4.2, Week2: 18.6 ± 13.0 the U / L, p <.05) and CK-MB (Pre: 5.3 ± 2.4, Week1: 7.6 ± 3.6, Week2: 12.9 ±2.6, U / L, p <.05) continued increased into the second weeks , third weeks before decrease; but no significant differences in IGF-1; maximal isometric strength in the usual (Pre: 316.4 ± 71.7, Post: 249.1 ± 75.0 Nm, p <.05) and non-dominant (Pre: 293.8 ± 79.9, Post: 238.3 ± 58.3 Nm, p <.05) were significantly decrease. Conclusion: LRHO exercise can produce to inflammation response on the muscle, but muscle strength follow to decrease, and IGF-1 no significant difference.
中文摘要Ⅰ
英文摘要Ⅱ
目 錄Ⅳ
表 次Ⅵ
圖 次Ⅶ
第壹章 緒論1
第一節 研究背景1
第二節 研究目的2
第三節 研究假設3
第四節 研究範圍與限制4
第五節 名詞操作型定義4
第貳章 文獻探討6
第一節 加壓運動訓練6
第二節 肌肉發炎及肌肉增生激素8
第三節 本章小結11
第參章 研究方法與步驟12
第一節 研究對象12
第二節 實驗時間與地點12
第三節 研究儀器與設備13
第四節 實驗設計15
第五節 實驗流程20
第六節 資料處理與統計分析21
第肆章 結果22
第一節 研究對象22
第二節 高加壓低阻力運動對肌肉發炎指標與增生激素的影響23
第三節 高加壓低阻力運動對運動表現的影響27
第四節 高加壓低阻力運動對肌肉量與脂肪量的影響29
第伍章 結論與討論31
第一節 討論31
第二節 結論34
第三節 建議35
參考文獻36
附錄42
附錄一 受試者須知42
附錄二 研究對象健康狀況調查表43
附錄三 研究對量參與同意書44

吳英黛 (2003)。人體生理學。2012 年 6 月 22 日,取自國立台灣體育大學,物理治療學系網址 http://www.pt.ntu.edu.tw/wu/exphysiol/ch3/5/1R4.htm
吳顥照 (2003)。複合訓練的理論與應用。中華體育季刊,3(17),1-10。
高藤曉子、賴麗雲 (2006)。加壓肌力訓練法。國民體育季刊,35(3),65-72。
郭哲宇、林威秀 (2011)。下肢加壓組力訓練。中華體育季刊,25(2),351-363。
黃國欽、邱亦涵及何采蓉 (2009)。在長期訓練下不同運動項目在急性期蛋白、肝功能及細胞激素之變化。運動教練科學,13,81-91。
馮煒權 (2000)。運動疲勞及過度訓練的生化診斷-運動生物化學動態之三。北京體育學院學報,15(1),1-11。
鄭桂玫、洪明吉 (2000)。肌酸激酶對肌肉運動傷害評估之探討。大專體育。49,189-193。
龍田種 (1995)。運動處方與健康。台北市: 力大。16-17。
Abe, T., Beekley, M. D., Hinata, S., Koizumi, K., & Sato, Y. (2005). Day-to-day change in muscle strength and MRI-measured skeletal muscle size during 7 days KAATSU resistance training: A case study. International Journal of KAATSU Training Research, 1(2), 71-76.
Abe, T., Yasuda, T., Midorikawa, T., Sato, Y., Kearns, C. F., Inoue, K., Koizumi, K., & Ishii, N. (2005). Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training. International Journal of KAATSU Training Research, 1(1), 6-12.
Abe, T., Sakamaki, M., Fujita, S., Ozaki, H., Sugaya, M., Sato, Y., & Nakajima, T. (2010). Effects of low-intensity walk training with restricted leg blood flow on muscle strength and aerobic capacity in older adults. Journal of Geriatric Physical Therapy, 33(1), 34-40.
ACSM. (2009). American College of Sports Medicine Position Stand. Progression models in resistance training for healthy adults. Medicine amd Science in Sports and Exercise, 41,687–708.
Apple, F. S., & Rhodes, M. (1988). Enzymatic estimation of skeletal muscle damage by analysis of changes in serum creatine kinase. Journal of Applied Physiology, 65, 2598–600.
Al-Hadi, H. A., & Fox, K. A. (2009). Cardiac markers in the early diagnosis and management of patients with acute coronary syndrome. Sultan Qaboos University Medical Journal, 9(3), 231-246.
Atomi, Y., & Miyashita, M. (1985). Influences of weight reduction on aerobic power and body composition of mickle-aged woman. Journal of Sports Medicine, 27, 501-509.
Burgomaster, K. A., Moore, D. R., Schofield, L. M., Phillips, S. M., Sale, D. G., & Gibala, M. J. (2003). Resistance training with vascular occlusion: Metabolic adaptations in human muscle. Medicine and Science in Sports and Exercise, 35(7), 1203-1208.
Clarkson, P. M., Kearns, A. K., Rouzier, P., Rubin, R., & Thompson, P. D. (2006). Serum creatine kinase levels and renal function measures in exertional muscle damage. Medicine and Science in Sports and Exercise, 38(4):623–627.
Campos, G. E., Luecke, T. J., Wendeln, H. K., Toma, K., Hagerman, F. C., Murray, T. F., & Staron, R. S. (2002). Muscular adaptations in response to three different resistance-training regimens:specificity of repetition maximum training zone. European Journal of Applied Physiology and Occupational Physiology, 88(1-2), 50-60.
Davies, K. J. A., Quintaniha, A. T., Brooks, G. A., & Packer, L. (1982). Free redicals and tissue damage produced by exercise. Biochemical Biophysical Research Communications, 107(4), 1198-1205.
Ebbeling, C. B., & Clarkson, P. M. (1989). Exercise-induced muscle damage and adaptation. Sports Medicine, 7(4), 207-234.
Flynn, M. G., Pizza, F. X., Boone, J. B. Jr., Andres, F. F., Michaud, T. A., & Rodriguez-Zayas, J. R. (1994). Indices of training stress during competitive running and swimming seasons. International Journal of Sports Medicine, 15, 21–26.
Fu, F. H., You, C. Y., & Kong, Z. W. (2002). Acute changes in selected serum enzyme and metabolite concentrations in 12-yr to 14 yr old athletes after an all-out 100 m swimming sprint. Perceptual and Motor Skills, 9 , 1171-1178.
Greiner, A., Esterhammer, R., Bammer, D., Messner, H., Kremser, C., Jaschke, W. R., ...Schocke, M. F. (2007). High-energy phosphate metabolism in the calf muscle of healthy humans during incremental calf exercise with and without moderate cuff stenosis. European Journal of Applied Physiology, 99(5), 519-531.
Goldfard, A. H., Bloomer, R. J., & Mckenzie, M. J. (2005). Combined antioxidant treatment effects on blood oxidative stress after eccentric exercise. Medicine and Science in Sports and Exercise, 37(2), 234-239.
Hanel, B., Law, I., & Mortensen, J. (2003). Maximal rowing has an acute effect on the blood-gas barrier in elite athletes. Journal of Applied Physiology, 95(3), 1076-1082.
Hoffman, E. P., & Clemens, P. R. (1996). HyperCKemic, proximal muscular dystrophies and the dystrophin membrane cytoskeleton, including dystrophinopathies, sarcoglycanopathies and merosinopathies. Current Opinion in Rheumatology, 8, 528-538.
Hortobagyi, T., & Denahan, T. (1989). Variability in creatine kinase: methodological, exercise and clinically related factors. International Journal of Sports Medicine, 10, 69-80.
Kawada, S. (2005). What phenomena do occur in blood flow-restricted muscle? International Journal of KAATSU Training Research, 1(2), 37-44.
Kraemer, W. J., & Hakkinen, K. (2002). Strength training for sport (pp. 20-35). Berlin, Germany: Blackwell Science.
Kraemer, W. J., Marchitelli, L., Gordon, S. E., Harman, E., Dziados, J. E., Mello, R., ...Fleck, S. J. (1990). Hormonal and growth factor responses to heavy resistance exercise protocols. Journal of Applied Physiology, 69(4), 1442-1450.
Kraemer, R. R., Durand, R. J., Acevedo, E. O., Johnson, L. G., Kraemer, G. R. Hebert, E. P., & Castracane, V. D. (2004). Rigorous running increases growth hormone and Insulin-like growth factor-I without altering Ghrelin. Experimental Biology and Medicine, 229(3), 240-246.
Loenneke, J. P., & Pujol, T. J. (2009). The Use of Occlusion Training to Produce Muscle Hypertrophy. Strength and Conditioning Journal, 31(3), 77-84.
Loenneke, J. P., Wilson, G. J., & Wilson, J. M. (2010). A mechanistic approach to blood flow occlusion. International Journal of Sports Medicine, 31(1), 1-4.
Lundberg, G., Olofsson, P., Ungerstedt, U., Jansson, E., & Sundberg, C. J. (2002). Lactate concentrations in human skeletal muscle biopsy, microdialysate and venous blood during dynamic exercise under blood flow restriction. Pflügers Archiv: European Journal of Physiology, 443(3), 458-465.
Manenti, E. R., Bodanese, L.C., Camey, S. A., & Polanczyk, C. A. (2006). Prognostic value of serum biomarkers in association with TIMI risk score for acute coronary syndromes. Clinical Cardiology, 29 (9), 405–410.
Manini, T. M., & Clark, B. C. (2009). Blood flow restricted exercise and skeletal
muscle health. Exercise and Sport Sciences Reviews, 37(2), 78-85.
Martinez-Amat, A., Boulaiz, H., Prados, J., Marchal, J. A., Padial-Puche P., Caba, O., ...Aranega, A. (2005). Release of alpha-actin into serum after skeletal muscle damage. British Journal of Sports Medicine,39(11),830–834.
Murthy, G., Hargens, A. R., Lehman, S., & Remple, D. M. (2001). Ischemia causes muscle fatigue. Journal of Orthopaedic Research, 19(3), 436-440.
Pagana, K. D., & Pagana, T. J. (1995). Mosby’s Diagnostic and Laboratory Test Reference. 2nd ed. St Louis , MO: Mosby-Year Book .
Pauletto, B. (1991). Strength training for coaches. Strength training principles. Leisure Press. 49-57.
Pierce, J. R., Clark, B. C., Ploutz-Snyder, L. L., & Kanaley, J. A, (2006). Growth hormone and muscle function responses to skeletal muscle ischemia. Journal of Applied Physiology, 101(6), 1588-1595.
Pollock, M.L., Gaesser, G.A., Butcher, J.D., Després, J.P., Dishman, R.K., Franklin, B.A. and Ewing Garber, C.
Pollocke, M. L., Gaesser, G. A., Butcher, J. D., Despres, J. P., Dishman, R. K., Franklin, B. A., & Ewing-Gaesser, G. A. (1988). American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Medicine and Science in Sports and Exercise, 30(6), 975991.
Pyne, D. B. (1994). Exercise-induced damage and inflammation. Australian Journal of Science and Medicine in Sport, 26, 49-58.
Sato, Y. (2005). The history and future of KAATSU Training. International Journal of KAATSU Training Research, 1(1), 1-5.
Suga, T., Okita, K., Morita, N., Yokota, T., Hirabayashi, K., Horiuchi, M., ...Tsutsui, H. (2009). Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. Journal of Applied Physiology, 106(4), 1119-1124.
Stathis, C. G., Febbraio, M. A., Carey, M. F., & Snow, R. J. (1994). Influence of sprint training on human skeletal muscle purine nucleotide metabolism. Journal of Applied Physiology, 76(4), 1802-1809.
Takarada, Y., Nakamura, Y., Aruga, S., Onda, T., Miyazaki, S., & Ishii, N. (2000).Rapid increase in plasma growth hormone after low-intensity resistance exercisewith vascular occlusion. Journal of Applied Physiology, 88(1), 61-65.
Takarada, Y., Takazawa, H., Sato, Y., Takebayashi, S., Tanaka, Y., & Ishii, N. (2000). Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. Journal of Applied Physiology, 88(6), 2097-2106.
Takarada, Y., Takazawa, H., & Ishii, N. (2000). Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Medicine and Science in Sports and Exercise, 32(12), 2035-2039.
Teramoto, M., & Golding, L. A. (2006). Low-intensity exercise, vascular occlusion, and muscular adaptations. Sports Medicine, 14(4), 259-71.
Tomi, I. H. V., Al-Qaisi, A. H. J., & Al-Qaisi, Z. H. J. (2010). Synthesis, characterization and effect of bis-1,3,4-oxadiazole rings containing glycine moiety on the activity of some transferase enzymes. Journal of King Saud University – Science, 23, 23-33.
Urhausen, A., & Kindermann, W. (1992). Biochemical monitoring of training. Clinical Journal of Sport Medicine, 2, 52-61.
Wernbom, M., Augustsson, J., & Raastad, T. (2008). Ischemic strength training: a low-load alternative to heavy resistance exercise? Scandinavian Journal of Medicine and Science in Sports, 18(4), 401-416.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文