跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 16:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪方傑
研究生(外文):Hung Fangchieh
論文名稱:分子模版技術(MIP)結合溶膠凝膠法(Sol-Gel)製備高選擇性和快速反應時間的銅(Cu(II))離子石英晶體微天平(QCM)晶片感測器
論文名稱(外文):Fabrication, characterization and sensing properties of Cu(II) ion imprinted sol-gel thin film on QCM
指導教授:蘇平貴蘇平貴引用關係
指導教授(外文):Su Piguey
口試委員:許正良張宏維
口試委員(外文):Hsu ChengliangChang Hungwei
口試日期:2012-06-27
學位類別:碩士
校院名稱:中國文化大學
系所名稱:化學系應用化學碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:70
中文關鍵詞:薄膜溶膠凝膠電化學石英微量天平金屬離子感測器
外文關鍵詞:Thin filmSol-gel growthElectrical characterizationDesorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
  本研究使用3-胺丙基三甲氧矽烷(3-aminopropyltrimethoxysilane)為作用單體、銅離子(II)為模版、四乙氧基矽烷(tetraethoxysilane)為交聯劑加入酸和鹼催化行共水解反應再運用分子模版技術(MIP)結合溶膠凝膠法(Sol-Gel)製備銅(Cu(II))離子石英晶體微天平(QCM)晶片感測器,並利用掃描式電子顯微鏡(SEM)、電化學阻抗頻譜分析儀(EIS)、循環伏安法(CV)、傅立葉轉換紅外線光譜儀(FTIR)分析其薄膜表面之特性。
  從顯微結構中觀察發現,酸催化系統所製作的薄膜,具有較強的機械強度。將製作出來的銅離子分子模版技術溶膠凝膠薄膜感測元件利用流動注射分析法(FIA)進行感度、選擇性、反應時間之探討。TEOS/APTS莫耳比10的銅離子分子模版技術溶膠凝膠薄膜感測元件具有良好的選擇性與短的反應時間。

  Cu(II)-molecularly imprinted sol-gel films (Cu(II)-MISGF), coated on a quartz crystal microbalance (QCM) chip, were fabricated using a sol-gel procedure. Co-hydrolysis and co-condensation of Cu(II) (templates), 3-aminopropyltrimethoxysilane (APTS, functional monomer) and tetraethoxysilane (TEOS, cross-linking agent) were performed with acid and base catalysis. The properties of the Cu(II)-MISGF were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and the electrochemical methods of cyclic voltammetry (CV). Microstructural observations revealed that the acid-catalyzed system yielded more mechanically stable thin films. A combined Cu(II)-MISGF-QCM with flow injection analysis (FIA) method was utilized to investigate the sensing performance of the Cu(II)-MISGF, with special emphasis on the most important properties of sensitivity, selectivity and response time. The Cu(II)-MISGF-QCM sensor, at a TEOS/APTS molar ratio of 10, exhibited excellent selectivity and rapidly responded to Cu(II) ions.
摘要 I
Abstract III
總目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1-1. 前言 1
1-2. 銅的相關介紹 2
1-3. 銅離子的相關感測元件 4
第二章 理論基礎 5
2-1. 分子模版技術(Molecularly imprinted technique) 5
2-2-1. 分子模版聚合物(Molecularly imprinting polymer) 5
2-2-2. 分子模版合成技術 6
2-2-3. 分子模版的組成 7
2-2-4. 分子模版的製備 11
2-2-5. 分子模版的應用 12
2-2. 溶膠-凝膠(Sol-Gel)技術 14
2-2-1. 溶膠-凝膠合成 14
2-2-2. 溶膠-凝膠法之應用 17
2-3. 分子模版與溶膠-凝膠感測元件發展現況 18
2-4. 石英微量天平(Quartz crystal microbalance ,QCM) 21
2-4-1. 原理 21
2-4-1-1. 壓電效應(Piezoelectric effect) 21
2-4-1-2. Sauerbrey Equation 21
2-4-2. QCM的應用 26
第三章 實驗方法與分析 29
3-1. 實驗藥品 29
3-2. 實驗設備與儀器 31
3-3. 實驗流程與步驟 32
3-3-1. QCM晶片的清洗 32
3-3-2. 分子模版技術(MIP)結合溶膠凝膠法(Sol-Gel) 薄膜QCM晶片的製備 32
3-3-3. 分析設備 34
3-3-4. QCM量測分析條件與流程 36
第四章 結果與討論 37
4-1. 銅離子分子模版技術溶膠凝膠薄膜(Cu(II)-MISGF)製備與特性 37
4-1-1. Cu(II)-MISGF薄膜表面結構之分析 39
4-1-2. Cu(II)-MISGF感測材料官能機分析 42
4-1-3. Cu(II)-MISGF材料之電化學分析 44
4-2. 銅離子分子模版技術溶膠凝膠薄膜(Cu(II)-MISGF)的感測特性 .46
4-2-1 pH值對MISGF-QCM感測器的影響效應 46
4-2-2 流速對MISGF-QCM感測器的影響 48
4-2-3 改變TEOS/APTS莫耳比對Cu(II)-MISGF感測器的感度、選擇性、反應時間之影響特性 49
4-2-4 環境樣品分析 54
4-3. 文獻比較 55
第五章 結論 56
第六章 參考文獻 57













表目錄
表1-1近十年來之銅離子感測元件 4
表2-1分子模版感測元件之相關文獻 19
表2-2分子模版離子感測元件相關文獻 20
表2-3分子模版溶膠-凝膠感測元件相關文獻 20
表4-1 TEOS/APTS莫耳比例對於Cu(II)-MISGFs-QCM感測器的影響效應。 50
表4-2 Cu(II)-MISGFs(莫耳比10)感測性金屬離子選擇性對照表 51
表4-3 Cu(II)-MISGF-QCM感測器的回收率 54
表4-4 文獻比較 55




















圖目錄
圖2-1分子鑰匙(template)與分子鎖座(polymers)示意圖 6
圖2-2常用之起始劑AIBN與VAZO 8
圖2-3分子模版製備程序常運用之官能基單體 9
圖2-4分子模版常用之交聯劑 10
圖2-5 製備聚合過程圖 12
圖2-6水解反應(Hydrolysis)方程式 15
圖2-7縮合反應(Condensation)方程式 16
圖2-8聚合反應(Polymerization)方程式 16
圖 2-9石英不同切割方式的角度 22
圖 2-10溫度影響不同切割方式的石英頻率偏差圖 22
圖 2-11石英晶體形成駐波示意圖 23
圖3-1 TEOS結構式 29
圖3-2 APTS結構式 29
圖3-3 FIA-QCM微量分析系統 34
圖3-4 FIA-QCM之實景圖 35
圖4-1 Cu(II)-MISGF QCM晶片感測器示意圖 38
圖4-2 鹼催化晶片表面 SEM圖 40
圖4-3 酸催化晶片表面 SEM圖 40
圖4-4 酸催化(莫耳比10),硝酸清洗後SEM圖 41
圖4-5 酸催化(莫耳比20),硝酸清洗後SEM圖 41
圖4-6酸催化(莫耳比10),薄膜厚度SEM圖 41
圖4-7 Cu(II)-MISGF材料的IR光譜圖 43
圖4-8 Cu(II)-MISGF材料的CV圖 45
圖4-9 TEOS/APTS莫耳比10的Cu(II)-MISGF-QCM感測器的pH值效應圖 47
圖4-10 FIA系統流速對於感度影響 48
圖4-11 莫耳比10、20感度測試圖 50
圖4-12 莫耳比10不同濃度感度測試圖 53
圖4-13 莫耳比10感測濃度線性圖 53


[1] H.Zhao, C.Xue, T.Nan , G.Tan, Z.Li, Q.X.Li,Q.Zhang, B.Wang,“ Detection of copper ions using microcantilever immunosensors and enzyme-linked immunosorbent assay ”, Analytica Chimica Acta 676 (2010) 81–86.
[2]W.Yang, J.J.Gooding, D.B.Hibbert. “ Characterisation of gold electrodes modified with self-assembled monolayers of L-cysteine for the adsorptive stripping analysis of copper ”, Journal of Electroanalytical Chemistry 516 (2001) 10–16
[3]W.Yang, J.J.Gooding, D.B.Hibbert. “ Redox voltammetry of sub-parts per billion levels of Cu 2+ polyaspartate-modified gold electrodes ”, Analyst 126 (2001) 1573–1577.
[4]R.S.Freire, L.T.Kubota, “ Application of self-assembled monolayer-based electrode for voltammetric determination of copper ”, Electrochimica Acta 49 (2004) 3795–3800.
[5]W.Yang, E.Chow, G.D.Willett, D.B.Hibbert and J.J.Gooding, “ Exploring the use of the tripeptide Gly–Gly–His as a selective recognition element for the fabrication of electrochemical copper sensors ”, Analyst 128(2003) 712-718.
[6]Z.P.Yang, C.J.Zhang,“ Designing of MIP-based QCM sensor for the determination of Cu(II) ions in solution ”, Sensors and Actuators B 142 (2009) 210–215.
[7]L.Pauling, “ A Theory of the Structure and Process of Formation of Antibodies ”, J.Am.Chem.Society.,62 (1940) 2643-2657.
[8]K.Mosbach, O.Ramstrom, “ The emerging technique of molecular imprinting and its future impact on biotechnology ” , Biotechnology14 (1996) 163-170.
[9]K.J.Shea, “ Molecular imprinting of synthetic network polymers: the de novo synthesis of macromolecular binding and catalytic sites ” Trends Polym.Sci. 2(1994) 166-173.
[10] J.Steinke, D.C.Sherrington, I.R.Dunkin, “ Imprinting of synthetic polymers using molecular templates ” , Adv. Polym. Sci. 123 (1995) 81-125.
[11] G.Wulff, “ Molecular Imprinting in Cross-linked Materials with the Aid of Molecular Templates ” , Angew. Chem. Int. Ed. Engl. 34 (1995) 1812-1832.
[12] 鶴田楨二,薛敬和,高分子合成反應,高立圖書(2001) 1-6。
[13] L.Schweit, L.I.Andersson, “ Molecular imprint-based stationary phases for capillary electrochromatography ” , Journal of Chromatography A 817 (1994) 5-13.
[14] D.Kriz, C.B.Kriz, L.I.Andersson, K.Mosbach, “ Thin-layer chromatography based on the molecular imprinting technique ” , Analytical Chemistry 66 (1994) 2636-2639.
[15] A.Zander, P.Findlay, T.Renner, B.Sellergren, “ Analysis of nicotine and its oxidation products in nicotine chewing gum by a molecularly imprinted solid-phase extraction ” , Analytical Chemistry 70 (1998) 3304-3314.
[16] M.E.Davis, A.Katz, W.R.Ahmad, “ Rational Catalyst Design via Imprinted Nanostructured Materials ”, Chemistry of Materials 8 (1996) 1820-1839.
[17] J.P.Youngblood, T.J.McCarthy, “ Ultrahydrophobic Polymer Surfaces Prepared by Simultaneous Ablation of Polypropylene and Sputtering of Poly(tetrafluoroethylene) Using Radio Frequency Plasma ”, Macromolecules 32 (1999) 6800.
[18] J.Y.Shiu, C.W.Kuo, P.L.Chen, C.Y.Mou, “ Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography ”,Chem mater 16 (2004) 561.
[19] K.Teshima, H.Sugimura, Y.Inoue, O.Takai, A.Takano, “ Ultra-Water-Repellent Poly (ethylene terephthalate) Substrates ”,Langmuir 19 (2003) 10624.
[20] Y.Y.Wu, H.Sugimura, T.Inoue, O.Takai, “ Thin Films with Nanotextures for Transparent and Ultra Water-Repellent Coatings Produced from Trimethylmethoxysilane by Microwave Plasma CVD ”, Chem Vap Deposition 8 (2002) 47.
[21] M.Li, J.Zhai, H.Liu, Y.L.Song, L.Jiang, D.B.Zhu,“ Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films ”, J. Phys Chem B 107 (2003) 9954.
[22] K.K.S.Lau, J.Bico, K.B.K.Teo, M.Chhowalla, G.A.J.Amaratunga, W. I.Miline, G.H.McKinley, K.K.Gleason,“ Superhydrophobic Carbon Nanotube Forests ”,Nano Letters 3 (2003) 1701.
[23] H.Liu, L.Feng, J.Zhai, L.Jiang, D.B.Zhu,“Synthesis, Testing, and Characterization of a Novel Nafion Membrane with Superior Performance in Photoassisted Immobilized Fenton Catalysis ”,Langmuir 20 (2004) 5629.
[24] 田佩, 周禮君,“ 有機矽烷氧基前驅物衍生的有機-無機混成溶凝膠材料 ”, 化工技術 8(5) (2000) 152-164。
[25] C.J.Brinker,“ Hydrolysis and condensation of silicates : effect on structure ”, J. Non-Cryst. Solids 100 (1988) 31-50.
[26] C.R.Silva, C.Airoldi,“ Acid and Base Catalysts in the Hybrid Silica Sol–Gel Process ”, J. Colloid Interface Sci 195 (1997) 381-387.
[27] D.A.Loy, K.J.Shea,“ Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials ”, Chem Rev 95 (1995) 1431-1442.
[28] B.M.Novak, “Hybrid Nanocomposite Materials-between inorganic glasses and organic polymers ”, Adv Mater 5 (1993) 422-433.
[29] G.Philipp, H.Schmidt,“ New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol-gel process ”, J. Non-Cryst. Solids 63 (1984) 283.
[30] K.Nakanishi, H.Minakuchi, N.Soga,“ Double pore silica gel monolith applied to liquid chromatography ”, J. Sol-Gel Sci. Technol. 8 (1997) 547-552.
[31] B.E.Yoldas,“ Technological significance of sol-gel process and process-induced variations in sol-gel materials and coatings ”, J. Sol-Gel Sci. Technol. 1 (1993) 65-77.
[32] P.T.Tanev, M.Chibwe, T.J.Pinnavaia,“ Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds ”, Nature 368 (1994) 321-323.
[33] A.Corma,“ From microporous to mesoporous molecular sieve materials and their use in catalysis ”, Chem. Rev. 97 (1997) 2373.
[34] H.Zhou, Z.Zhang, D.He, Y.Xiong“ Flow through chemiluminescence sensor using molecularly imprinted polymer as recognition elements for detection of salbutamol ”, Sensors and Actuators B 107 (2005) 798–804.
[35] M.Zougagh, A.Ríos, M.Valcárcel,“ Automatic selective determination of caffeine in coffee and tea samples by using a supported liquid membrane-modified piezoelectric flow sensor with molecularly imprinted polymer ”, Analytica Chimica Acta 539 (2005) 117–124.
[36] H.Sun, Y.Fung,“ Piezoelectric quartz crystal sensor for rapid analysis of pirimicarb residues using molecularly imprinted polymers as recognition elements ”, Analytica Chimica Acta 576 (2006) 67–76.
[37] S.Wei, A.Molinelli, B.Mizaikoff,“ Molecularly imprinted micro and nanospheres for the selective recognition of 17-estradiol ”, Biosensors and Bioelectronics 21 (2006) 1943–1951.
[38] K.Prasad, K.P.Prathish, J.M.Gladis, G.R.K.Naidu, T.P.Rao,“ Molecularly imprinted polymer (biomimetic) based potentiometric sensor for atrazine ”, Sensors and Actuators B 123 (2007) 65–70.
[39] S.Yan, Y.Fang, Z.Gao,“ Quartz crystal microbalance for the determination of daminozide using molecularly imprinted polymers as recognition element ”, Biosensors and Bioelectronics 22 (2007) 1087–1091.
[40] M.Javanbakht, S.E.Fard, A.Mohammadi, M.Abdouss, M.R.Ganjali, P.Norouzi, L.Safaraliee,“ Molecularly imprinted polymer based potentiometric sensor for the determination of hydroxyzine in tablets and biological fluids ”, analytica chimica acta 612 (2008) 65–74.
[41] R.Liang, R.Zhang, W.Qin,“ Potentiometric sensor based on molecularly imprinted polymer for determination of melamine in milk ”, Sensors and Actuators B 141 (2009) 544–550.
[42] E.Pardieu, H.Cheap, C.Vedrine, M.Lazerges, Y.Lattach, F.Garnier, S.Remita, C.Pernelle,“ Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine ” , Analytica Chimica Acta 649 (2009) 236–245.
[43] T.Alizadeh, M.Akhoundian, “ A novel potentiometric sensor for promethazine based on a molecularly imprinted polymer (MIP): The role of MIP structure on the sensor performance ”, Electrochimica Acta 55 (2010) 3477–3485.
[44] T.Alizadeh, M.R.Ganjali, M.Zare, P.Norouzi,“ Development of a voltammetric sensor based on a molecularly imprinted polymer (MIP) for caffeine measurement ”, Electrochimica Acta 55 (2010) 1568–1574.
[45] J.R.M.Neto, W.J.R.Santos, P.R.Lima, S.M.C.N.Tanaka, AA.Tanaka, L.T.Kubota,“ A hemin-based molecularly imprinted polymer (MIP) grafted onto a glassy carbon electrode as a selective sensor for 4-aminophenol amperometric ”, Sensors and Actuators B 152 (2011) 220–225.
[46] F.T.C.Moreira, M.G.F.Sales,“ Biomimetic sensors of molecularly-imprinted polymers for chlorpromazine determination ”, Materials Science and Engineering C 31 (2011) 1121–1128.
[47] T.Alizadeh, M.R.Ganjali, M.Zare, P.Norouzi, “ Selective determination of chloramphenicol at trace level in milk samples by the electrode modified with molecularly imprinted polymer ”, Food Chemistry 130 (2012) 1108–1114.
[48] Y.Wang, J.Tang, X.Luo, X.Hu, C.Yang, Q.Xu,“ Development of a sensitive and selective kojic acid sensor based on molecularly imprinted polymer modified electrode in the lab-on-valve system ”, Talanta 85(2011) 2522–2527.
[49] T.P.Rao, R.Kala, S.Daniel, “Metal ion-imprinted polymers—Novel materials for selective recognition of inorganics ”, Analytica Chimica Acta 578 (2006) 105–116.
[50] A.Baghel, M.Boopathi, B.Singh, P.Pandey, T.H.Mahato, P.K.Gutch, K.Sekhar,“ Synthesis and characterization of metal ion imprinted nano-porous polymer for the selective recognition of copper ”, Biosensors and Bioelectronics 22 (2007) 3326–3334.
[51] N.T.Hoai, D.K.Yoo, D.Kim,“ Batch and column separation characteristics of copper-imprinted porous polymer micro-beads synthesized by a direct imprinting method ”, Journal of Hazardous Materials 173 (2010) 462–467.
[52] W.Zhihua, L.Xiaole, Y.Jianming, Q.Yaxin, L.Xiaoquan, “ Copper(II) determination by using carbon paste electrode modified with molecularly imprinted polymer ”, Electrochimica Acta 58 (2011) 750–756.
[53] V.Vatanpour, S.S.Madaeni, S.Zinadini, H.R.Rajabi, “ Development of ion imprinted technique for designing nickel ion selective membrane ”, Journal of Membrane Science 373 (2011) 36–42.
[54] T.Alizadeh, S.Amjadi, “ Preparation of nano-sized Pb 2+ imprinted polymer and its application as the chemical interface of an electrochemical sensor for toxic lead determination in different real samples”, Journal of Hazardous Materials 190 (2011) 451–459.
[55] J.Huang, X.Zhang, Q.Lin, X.He, X.Xing, H.Huai, W.Lian, H.Zhu,“ Electrochemical sensor based on imprinted solegel and nanomaterials for sensitive determination of bisphenol A ”, Food Control 22 (2011) 786e791.
[56]周卓明, “壓電力學Piezoelectricity Mechanics” ,金華科技圖書股份有限公司.
[57]辻本正美、廖詩文,“高頻通訊用晶體振盪器的技術及發展,電子與材料雜誌,13(2002)126-131.
[58] D.A.Buttry, M.D.Ward, “Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance” , Chemical Reviews 92(1992)1355-1379.
[59] G.Sauerbrey, “ Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung ” , Zeitschrift für Physik 155(1959)206-222.
[60] K.K.Kanazawa, J.G.Gordon, “ Frequency of a quartz microbalance in contact with liquid ” , Analytical Chemistry 57(1985)1770-1771.
[61] M.Matsuguchi, Y.Kadowaki, “ Poly(acrylamide) derivatives for QCM-based HCl gas sensor applications ” , Sens. Actuator B 130 (2008) 842-847.
[62] J.H.Kim, S.H.Kim, S.Shiratori, “ Fabrication of nanoporous and hetero structure thin film via a layer-by-layer self assembly method for a gas sensor ” , Sens. Actuator B 102 (2004) 241-247.
[63] Y.M.Sabri, S.J.Ippolito, J.Tardio, A.J.Atanacio, D.K.Sood, S.K. Bhargava, “ Mercury diffusion in gold and silver thin film electrodes on quartz crystal microbalance sensors ” , Sens. and Actuators B 137 (2009) 246-252.
[64] L.Li, Q.Sheng, J.Zheng, H.Zhang, “ Facile and controllable preparation of glucose biosensor based on Prussian blue nanoparticles hybrid composites” , Bioelectrochemistry 74 (2008) 170–175.
[65] R.Hao, D.Wang, X.Zhang, G.Zuo, H.Wei, R.Yang, Z.Zhang, Z.Cheng, Y.Guo, Z.Cui, Y.Zhou, “ Rapid detection of Bacillus anthracis using monoclonal antibody functionalized QCM sensor ” , Biosensors and Bioelectronics 24 (2009) 1330–1335.
[66] L.Guicai, S.Xiaoli, Y.Ping , Z.Ansha, H.Nan, “ Investigation of fibrinogen adsorption on solid surface by quartz crystal microbalance with dissipation(QCM-D) and ELISA ” Solid State Ionics 179 (2008) 932-935.
[67] A.M.Etorki, A.R.Hillman, K.S.Ryder, A.Glidle, “ Quartz crystal microbalance determination of trace metal ions in solution”, Journal of Electroanalytical Chemistry 599 (2007) 275-287.
[68] G.S.Huang, M.T.Wang, C.W.Su, Y.S.Chen, M.Y.Hong, “ Picogram detection of metal ions by melanin-sensitized piezoelectric sensor ” , Biosensors and Bioelectronics 23 (2007) 319–325.
[69] F.Wudy, M.Multerer, C.Stock, G.Schmeer, H.J.Gores, “ Rapid impedance scanning QCM for electrochemical applications based on miniaturized hardware and high-performance curve fitting” , Electrochimica Acta 53 (2008) 6568–6574.
[70] M. Grden, “ Electrochemical quartz crystal microbalance studies of a palladium electrode oxidation in a basic electrolyte solution” , Electrochimica Acta 54 (2009) 909–920.
[71] Zampetti, E.Pantalei, S.Macagnano, A.Proietti, E.D.Natale, C. D’Amico, “ Use of a multiplexed oscillator in a miniaturized electronic nose based on a multichannel quartz crystal microbalance ” , Sens. and Actuators B 131(2008)159-166.
[72] Z.Wang, G.Wu, M.Wang, C.He,“ An imprinted organic–inorganic hybrid sorbent for selective separation of copper ion from aqueous solution ”, J Mater Sci 44 (2009) 2694–2699.
[73] L.R.Allain, K.Sorasaenee, Z.Xue,“ Doped Thin-Film Sensors via a Sol−Gel Process for High-Acidity Determination ”, Anal. Chem. 69 (1997) 3076–3080.
[74] Y.Ren, X.Wei, M.Zhang,“ Adsorption character for removal Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent ”, Journal of Hazardous Materials 158 (2008) 14–22.
[75] Y.K.Lu, X.P.Yan,“ An Imprinted Organic−Inorganic Hybrid Sorbent for Selective Separation of Cadmium from Aqueous Solution ”, Anal. Chem. 76 (2004) 453.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top