跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 03:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳元喜
研究生(外文):Wu, Yuanhsi
論文名稱:熱解處理條件對玉米澱粉理化特性之影響
論文名稱(外文):Effect Of Pyrolysis On Physicochemical Properties Of Corn Starch
指導教授:張永和張永和引用關係
指導教授(外文):Chang, Yungho
口試委員:賴喜美呂廷璋林政樺
口試委員(外文):Lai, HsimeiLu, TingjangLin, Jhenghua
口試日期:2011-06-22
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:熱解糊精熱解處理
外文關鍵詞:pyrodextrinpyroconversion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:397
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對玉米澱粉添加不同濃度鹽酸(0、0.01、0.03、0.05、0.1及0.2%,澱粉乾重)於不同溫度(120、130及140 oC)下作用不同時間(1、2及3小時)製備熱解糊精,觀察處理條件對熱解糊精之顆粒外觀、色差值、分子量、溶解度、還原糖含量及抗性澱粉含量的影響。經不同處理條件製備之熱解糊精皆有近90%以上之產率,除0.2%鹽酸濃度於140 oC作用2及3小時之樣品(76.5及73.9%)外。鹽酸濃度為0.05%以下之樣品保有澱粉顆粒型態及十字偏光性,但鹽酸濃度為0.03及0.05%之樣品有部分顆粒破碎並損失十字偏光性,而鹽酸濃度0.1及0.2%之樣品已無完整顆粒及十字偏光性。不同處理之熱解糊精粉末的色差值則隨著鹽酸濃度、作用溫度及作用時間增加有上升的趨勢,且於產品外觀上可觀察到相同結果。溶解度(25 oC)、還原糖含量、抗性澱粉(resistant starch, RS)含量及熱解糊精分子量降解率隨著鹽酸濃度、作用溫度及作用時間增加會導致提升。顯示於熱解反應中澱粉分子結構產生改變,但於鹽酸濃度0.2%製備之樣品中可發現部分再聚合分子部分。
綜合而言, 澱粉於低鹽酸濃度(0-0.05%鹽酸)下進行熱解反應仍保留部分澱粉顆粒及理化性質,但也受到熱解轉化之影響增加了溶解度及RS含量。而添加鹽酸0.1及0.2%之樣品則經大量水解反應得到小分子之熱解糊精且具有高的溶解度及RS含量,但已完全失去顆粒結構型。藉由調整鹽酸濃度可以使熱解糊精產品之理化性質達所須目的。
鹽酸濃度、作用溫度及作用時間皆顯著影響熱解糊精之溶解度、還原糖及RS含量,若未添加鹽酸下僅以高溫及長時間作用則對熱解糊精之RS含量影響不明顯。鹽酸濃度為影響熱解糊精之溶解度、還原糖及RS含量的主要因素,貢獻率分別為95.4、84.2及92.6%。相對地,鹽酸濃度對還原糖含量之貢獻率較低,由於還原糖含量為澱粉經熱解反應形成再聚合現象之主要指標,故可得知鹽酸雖為熱解反應之主要影響因素,但仍須配合作用溫度及作用時間以控制產品理化性質。
Pyrodextrins were prepared from corn starch at different concentrations of HCl (0, 0.01, 0.03, 0.05, 0.1 and 0.2%, based on starch dry weight), reaction temperatures (120, 130 and 140 oC), and reaction times (1, 2 and 3 h), and the effects of pyrolysis conditions on physicochemical properties of products were studied. Yields of pyrodextrins at different pyrolysis conditions were above 90%, except for the pyrodextrins prepared with 0.2% HCl at 140 oC for 2 or 3 h, which showed 76.5% and 73.9% of yield, respectively.
Pyrodextrins prepared with less than 0.05% HCl remained the granular structure and birefringence of starch, but pyrodextrins prepared with 0.03 and 0.05% HCl lost their granular structure and birefringence. Color difference of pyrodextrins increased with the increasing of HCl concentration, reaction temperature and reaction time, this could be confirmed by photo observation. Solubility (25 oC), reducing sugar content, resistant starch (RS) content and extent of degradation increased with increasing concentration of HCl, which indicates the change in molecular structure during pyroconversion, however, repolymerization occurred in pyrodextrins prepared with 0.2% HCl concentration.
In conclusion, pyrodextrins prepared at low HCl concentration (0-0.05%HCl) retained the granular structure of starch and the relative physicochemical properties, but also showed higher solubility and RS content. While pyrodextrins prepared at 0.1 and 0.2% HCl concentrations underwent intense hydrolysis and resulted in small molecular size products with increase solubility and RS content. Adjustment in HCl concentration could be used to to prepared pyrodextrins with desired physicochemical properties.
HCl concentration, reaction temperature and reaction time showed significant effect on solubility, reducing sugar content and RS content of pyrodextrins. While pyrolysis performance at high reaction temperature and long duration without the presence of HCl showed no effect on RS content and net RS yield of the prepared pyrodextrins. Among the three parameters, HCl concentration plays the major role on solubility, reducing sugar content, RS content and net RS yield, with 95.4, 84.2, 92.6 and 91.1% in total contribution values, respectively. Compared to the other properties, HCl concentration showed lower contribution value in reducing sugar content. Since reducing sugar content is an index of repolymerization during pyroconversion, specified HCl concentration accompanies with suitable reaction temperature and time is needed for preparing pyrodextrins with desired properties.
前言 1
文獻回顧 3
一、熱解反應 3
二、熱解糊精之分類 3
三、熱解糊精之製程 6
四、影響熱解反應之因素 6
(一)澱粉種類 6
(二)澱粉水分含量 10
(三)系統開放性 10
(四)作用器具及製備方法 11
(五)催化劑 12
(六)作用溫度 12
(七)作用時間 12
(八)直鏈澱粉含量 13
五、熱解對澱粉性質之影響 13
(一)色澤 13
(二)顆粒外觀 13
(三)黏度 15
(四)溶解度 15
(五)還原糖含量 16
(六)結晶度 16
(七)消化特性 17
(八)分子量分布 18
(九)結構特性 19
材料與方法 24
一、實驗材料 24
(一)澱粉 24
(二)試藥 24
二、樣品製備 24
三、理化性質之測定 24
(一)色澤 24
(二)產品外觀 26
(三)顆粒外觀 26
(四)溶解度 26
(五)還原糖含量 26
(六)分子量分布 27
(七)抗性澱粉含量 27
(八)統計分析 28
結果與討論 29
一、產率 29
二、產品色澤及外觀 29
四、顆粒外觀 36
五、溶解度 47
六、還原糖含量 50
七、分子量分布 52
八、抗性澱粉含量 59
結論 68
參考文獻 69
答客問 73
楊建澤、余維平、賴喜美。 1988。利用食米製造焙燒糊精之研究 第一報 糊精化方法及條件之探討。中國農業化學會誌26(1),63-68。
AACC. 2000. Official Methods of the American Association of Cereal Chemists. 10th ed. Minnesota: American Association of Cereal Chemists.
Campechano-carrera, E., Corona-cruz, A., Chel-guerrero, L., and Betancur-ancona, D. 2007. Effect of pyrodextrinization on available starch content of lima bean (Phaseolus lunatus) and cowpea (Vigna unguiculata) starches. Food Hydrocolloids, 21(3), 471-479.
Christensen, G. M., and Smith, F. 1959. The constitution of wheat starch dextrin. Journal of the American Chemical Society, 79(16), 4492-4495.
Geereds, J. D., Lewis, D. b., and Smith, F. 1957. The constitution of corn starch dextrin. Journal of the American Chemical Society, 79(15), 4209-4212.
Englyst, H. N., Kingman, S. M., and Cummings, J. H. 1992. Classification and measurement of nutritionally importance starch fraction. European Journal of Clinical Nutrition, 46(suppl.2), S33-50.
Hizukuri, S., Takeda, Y., Yasuda, M., and Suzuki, A. 1981 Multi-branched nature of amylose and the action of debranching enzymes. Carbohydrate Research, 94(2), 205-213.
Horton, D. 1965. Pyrolysis of starch. In Starch Chemical and Technology Volume I (pp.421-436). New York and London: Academic Press.
Kapusniak, J., and Jane, J. L. 2007. Preparation and characteristics of enzyme-resistant pyrodextrins from corn starch. Polish Journal of Food and Nutrition Sciences, 57(1), 261-265.
Kwon, S. K., Chung, M. K., Shin, S. I., and Moon, T. W. 2005. Contents of indigestible fraction, water solubility, and color of pyrodextrins made from waxy sorghum starch. Cereal Chemistry, 82(1), 101-104.
Laurentin, A., Cardenas, M., Ruales, J., Perez, E., and Tovar, J. 2003. Preparation of indigestible pyrodextrins from different starch sources. Journal of Agricultural and Food Chemistry 51(18), 5510-5515.
Leszczynski, W. 2004. Resistant starch – classification, structure, production. Polish Journal of Food and Nutrition Sciences, 54(1), 37-50.
Lin, J. H., Lee, S. Y. and Chang, Y. H. 2003. Effect of acid-alcohol treatment on the molecular structure and physicochemical properties of maize and potato starches. Carbohydrate Polymers, 53(4), 475-482.
McCleary, B. V., and Prosky, L. 2001. Resistant starch. In Brown, I. L., McNaught, K. J., Andrews, D., & Morita, T. (Eds.), Advanced Dietary Fibre Technology(pp. 401–410). Ames: Iowa State University Press.
Okuma, K., and Matsuda, I. 2002. Indigestible fractions of starch hydrolysates and their determination method. Journal of Applied Glycoscience, 49(4), 479-485.
Orozco-martinez, T., and Betancur-ancona, D. (2004). Indigestible starch of P. lunatus obtained by pyroconversion: changes in physicochemical properties. Starch, 56(6), 241-247.
Shin, S. I., Lee, C. J., Kim, D. I., Lee, H.A., Cheong, J. J., Chung, K. M., Bail, M. Y., Park, C. S., Kim, C. H., & Moon, T. W. (2007). Formation, characterization, and glucose response in mice to rice starch with low digestibility produced by citric acid treatment. Journal of Cereal Science, 45(1), p24-33.
Sirvastava, C. H., Parmar, R. S., and Dave, G. B. (1970). Studies on dextrinization Part I. Pyrodextrinization of corn starch in the absence of any added catalyst. Starch 22(2), 49-54.
Steel, R. G. D., and Torrie, J. H. 1980. Analysis of variance III: factorial experiments in Principles and procedures of statistics: a biometrical approach (pp336-76). 2nd ed, McGraw-Hill, New York, NY.
Thomas, D. J. and Atwell, W. A. 1999. Gelatinization, pasting, and retrogradation. In Starches (pp.25-48). St. Paul, Minnesota: Eagan Press.
Thompson, A. and Wolfrom. M. L. 1958. The composition of pyrodextrins. Journal of the American Chemical Society, 80(24), 6618-6620.
Ueno, Y., Izumi, M., and Kato, K. 1977. Studies on pyrodextrinization of corn starch Part II. A scanning electron microscopic study. Starch, 29(10), 329-355.
Wang, Y. J., Kozlowski, R., and Delgado, G. A. (2001). Enzyme resistant dextrins from high amylose corn mutant starches. Starch, 53(1), 21-26
Wankhede, D. B., and Umadevi, U. 1982. Preparation and some physicochemical properties of pyrodextrins of ragi, wheat, jowar and rice starches. Starch, 34(5), 162-165.
Wolfrom, M. L., and Thompson, A. 1959. The composition of pyrodextrins. II. Thermal polymerization of levoglucason. Journal of the American Chemical Society, 81(17), 4623-4625.
Wurzburg, O. B. 1991. Converted starches. In Modified Starches Properties and Uses (pp.17-40) 5th ed, Bridgewater: CRC press.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top