跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 18:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭心儀
研究生(外文):Peng, Hsinyi
論文名稱:壹、食茱萸葉部萃取物之抗血癌活性及其機制探討 貳、西洋蓍草精油抗發炎及抗黑色素生成之機制探討
論文名稱(外文):1.Study On The Anti-leukemia Activity Of The Zanthoxylum Ailanthoides Sieb. Zucc. Leaves Extracts2.Study On The Anti-inflammation And Anti-melanogenesis Activities Of Essential Oil From Achillea Millefolium
指導教授:周淑姿周淑姿引用關係
指導教授(外文):Chou, Sutze
口試委員:周淑姿鍾景光吳天賞楊仁宏張珍田
口試委員(外文):Chou, SutzeChung, JinggungWu, TianshungYang, JenhungChang, Chentien
口試日期:2012-07-17
學位類別:博士
校院名稱:靜宜大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:249
中文關鍵詞:食茱萸西洋蓍草精油細胞凋亡抗黑色素生成抗發炎氧化/抗氧化
外文關鍵詞:Zanthoxylum ailanthoides Sieb & Zucc.Achillea millefolium Lessential oilapoptosisanti-melanogenesisanti-inflammatoryoxidant/antioxidant
相關次數:
  • 被引用被引用:4
  • 點閱點閱:559
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為兩部分進行探討,第一部分為食茱萸葉部萃取物之抗血癌活性及其機制探討,第二部分為西洋蓍草精油抗發炎及抗黑色素生成之機制探討。
第一部份:食茱萸 (Zanthoxylum ailanthoides Sieb. & Zucc.) 為芸香科花椒屬植物,別名紅刺蔥。第一為探討食茱萸葉部萃取物對小鼠血癌細胞 (WEHI-3 cell) 細胞存活、細胞週期及DNA損傷之影響,結果顯示,食茱萸葉部萃取之添加可抑制WEHI-3細胞之生長,並使細胞週期停滯在G0/G1期,並造成DNA之損傷。第二為探討食茱萸葉部萃取物之抗血癌活性篩選探討,將食茱萸葉部經由溶解度分配萃取後得到萃取物及四個化合物,分析其抗血癌之活性探討,粗萃取物經氯仿溶劑萃取所得氯仿層萃取物對人類急性骨隨血癌細胞 (HL-60) 及WEHI-3具有細胞毒性之功效,氯仿層再由光譜學方法分離出四種結構化合物如pheophorbide-a methyl ester (1)、pheophorbide-b methyl ester (2)、132-hydroxyl (132-S) pheophorbide-a methyl ester (3) 及 132-hydroxyl (132-R) pheophorbide-b methyl ester (4),在化合物2、3及4對兩株血癌細胞株皆具對細胞毒性之作用,萃取物及化合物1-4皆具有誘導血癌細胞其細胞凋亡及DNA損傷之作用因此食茱萸具有抗血癌之活性成分。第三為探討pheophorbide-a對抗血癌之機制探討,結果可知pheophorbide-a對WEHI-3及HL-60細胞具有抑制細胞生長及誘導細胞凋亡,經DAPI染色法、彗星試驗法及DNA斷裂法中得知pheophorbide-a具有誘導血癌細胞之DNA損傷;由細胞流式儀中得知pheophorbide-a能誘導細胞膜電位的改變及釋放活性氧物質與鈣離子,並抑制Bcl-2及增加Bax之蛋白表現。此外,pheophorbide-a能增加caspase-3、-9、AIF 及 PARP之表現;在MAPK家族中可抑制其ERK及增加JNK與p38之表現;而pheophorbide-a之添加能降低血癌細胞中麩胱甘肽及增加脂質過氧化之含量。綜合上述pheophorbide-a可經由調控氧化/抗氧化系統而達到抗血癌之功效。
第二部分:西洋蓍草(Achillea millefolium L.) 屬於菊科,西洋蓍草精油 (AM-EO) 具抗氧化及抗菌活性,然而對於抗黑色素及抗氧化之活性則鮮少被探討。因此本研究分為兩部分,第一則探討AM-EO對α-melanocyte-stimulating hormone (α-MSH) 誘導小鼠黑色素瘤細胞(B16 cells) 其黑色素生成、酪胺酸酶活性、氧化/抗氧化系統及相關蛋白表現之影響,如JNK、p38及ERK。結果顯示經α-MSH誘導B16細胞後,其AM-EO之添加能降低超氧陰離子、脂質過氧化物及超氧歧化酶之活性,並增加麩胱甘肽含量、觸酶及麩胱甘肽過氧化酶之活性。並降低黑色素之含量、酪胺酸酶活性及其蛋白表現,主要是經由抑制JNK之蛋白表現來調控。綜合上述結果可知經α-MSH誘導B16細胞後,西洋蓍草精油之添加可透過調節氧化壓力,來降低酪胺酸酶表現及抑制JNK之蛋白表現。第二則探討西洋蓍草精油抗發炎之活性,結果顯示AM-EO可降低LPS誘發RAW264.7細胞其一氧化氮、超氧陰離子及脂質過氧化物之生成,並調節GSH與抗氧化酵素之恆定。AM-EO能回復LPS誘導所導致細胞DNA損傷及DNA ladder之呈現,並降低發炎相關酵素iNOS、COX-2及發炎細胞激素TNF-α及IL-6之mRNA表現,且能降低HO-1 mRNA,以達細胞保護作用,綜合上述,西洋蓍草精油具有良好之抗氧化性,並能有效降低經LPS誘導所導致細胞之氧化壓力及發炎反應。
Two studies were comprised in this dissertation. First, study on the anti-leukemia activity of the Zanthoxylum ailanthoides Sieb. Zucc. leaves extracts.. Second, study on the anti-inflammation and anti-melanogenesis activities of essential oilfrom Achillea millefolium.
Part 1, Zanthoxylum ailanthoides Sieb & Zucc. is a traditional Chinese herbal medicine that is belonging to the Rutaceae family. First, the effect of extracts from the leaves of Z. ailanthoides (LE) on the growth, cell cycle and DNA damage of myelomonocytic leukemia (WEHI-3) was studied. The results demonstrated that LE can inhibit the cell growth, induce cell cycle arrest on G0/G1 phase and induced DNA damage. The second study, the effect of anti-leukemia ability of extracts from Z. ailanthoides Sieb. & Zucc. leaves. was studied. Extraction of the leaves of Zanthoxylum ailanthoides Sieb. & Zucc. affords extracts and four isolated compounds which exhibit activities against leukemia cells. The chloroform soluble fraction (ZAC) of the crude extract of this plant showed cytotoxic activity against human promyelocytic leukemia (HL-60) and myelomonocytic leukemia (WEHI-3) cells. The active ZAC was further separated to yield pheophorbide-a methyl ester (1), pheophorbide-b methyl ester (2), 132-hydroxyl (132-S) pheophorbide-a methyl ester (3) and 132-hydroxyl (132-R) pheophorbide-b methyl ester (4) whose structures were confirmed by spectroscopic methods. Compounds 2, 3 and 4 showed cytotoxic activities against both leukemia cells. The extracts and compounds 1-4 also induced apoptosis and DNA damage in leukemia cells after treatment. Furthermore, the anti-leukemia activity of pheophorbide-a from Zanthoxylum ailanthoides Sieb. & Zucc. was investigated. The results demonstrated that pheophorbide-a can inhibit the cell growth and induce apoptosis. The DAPI staining, comet assay and DNA fragmentation assay were conducted and they indicated that pheophorbide-a induced WEHI-3 and HL-60 cells DNA damage. Flow cytometry assay demonstrated that pheophorbide-a induced the change of mitochondrial membrane potential, reactive oxygen species (ROS) production and calcium releasing. Pheophorbide-a inhibited the expression of Bcl-2 and promoted the levels of Bax. Furthermore, pheophorbide-a a can increase the expression of caspase-3, -9, AIF and PARP. In MAPK family, pheophorbide-a can decrease the expression levels of ERK and increase the levels of JNK, and p38. Pheophorbide-a decreased the glutathione peroxidase activity and increased the malondialdehyde levels in WEHI-3 and HL-60 cells. The results suggested that the Z. ailanthoide may modulate the oxidant/antioxidant system and have the biological activity against leukemia cells.
Part 2, Achillea millefolium L. belongs to Asteraoease family. The essential oil (AM-EO) extracted by steam distillation from the flowers parts of Achillea millefolium has reported to exhibit antioxidant and antibacterial activities. However, little information regarding its anti-melanogenesis and anti- inflammatory activities effect is presently available. First, we investigated the effects of AM-EO on melanin synthesis, tyrosinase activity, oxidant/antioxidant status and its gene expression in α-melanocyte-stimulating hormone (α-MSH)-stimulated melanoma B16 cells. The transcriptional levels of c-jun N-terminal or stress-regulated protein kinase (JNK), phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal regulated kinase (ERK) were also studied. The results indicated that AM-EO decreased the superoxide anion, malondialdehyde levels, superoxide dismutase activity and increase the glutathione levels, catalase activity, glutathione peroxidase activity in α-MSH-stimulated B16 cells. The melanin levels, tyrosinase activity and tyrosinase expression were decreased after the treatment with AM-EO in α-MSH-stimulated B16 cells. In addition, the expression levels JNK were also inhibited by AM-EO. The results showed that AM-EO inhibited melanogenesis in B16 cells through the decreased of tyrosinase expression and inhibition of JNK that was correlated with the modulation of oxidative stress. Secondly, we investigated the anti-inflammatory activities of AM-EO. The results indicated that treatment of RAW 264.7 macrophages with AM-EO significantly decreased LPS-induced nitric oxide levels, superoxide anion production, malondialdehyde levels, and regulated the GSH level and antioxidant enzyme activities. The results showed that AM-EO may ameliorate oxidative stress in LPS-stimulated RAW 264.7 macrophages. Furthermore, the AM-EO can prevents LPS-induced DNA fragmentation in RAW 264.7 macrophages, and reduce the LPS-induced RAW 264.7 macrophages mRNA expression including iNOS, COX-2, IL-6 and TNF-α mRNA expression. Additionally, the AM-EO can also decrease the HO-1 mRNA expression in LPS-induced RAW 264.7 macrophages. The decreasing HO-1 mRNA expression was reported that can protect cells from inflammation. The results suggested that the AM-EO has antioxidant activity to suppress oxidative stress and inflammation in LPS-induced RAW 264.7 macrophages
目錄 I
表目錄 III
圖目錄 IV
中文摘要 VIII
Abstract X

第一篇:食茱萸葉萃取物之抗血癌及抗發炎活性探討
第一章 前言 1
第二章 文獻回顧 3
第一節 食茱萸簡介 3
第二節 食茱萸相關研究 3
第三節 Pheophorbide-a (Pa) 相關研究 5
第四節 白血病(Leukemia) 6
第五節 細胞增殖與調控 9
第六節 細胞凋亡 (Apoptosis) 11
第七節 氧化壓力與抗氧化防禦系統 14
第三章 研究目的與架構 20
第四章 材料與方法 24
第一節 儀器設備及器材 24
第二節 藥品試劑 25
第三節 實驗方法 28
第五章 結果 43
第一部分 43
第二部分 48
第三部分 61
第六章 討論 91
第七章 結論 99

第二篇、西洋蓍草精油抗發炎及抗黑色素生成之機制探討 102
第一部份:探討西洋蓍草精油抗黑色素生成之機轉 102
第一章 前言 103
第二章 文獻回顧 105
第一節 精油之簡介 105
第二節 皮膚之構造 112
第三節 黑色素細胞 (Melanocyte) 與黑色素小體 (Melanosomes) 115
第四節 黑色素相關酵素與生成 117
第五節 黑色素生成機轉 (Melanogenesis) 118
第六節 黑色素生成與抗氧化系統 125
第三章 研究目的與架構 129
第四章 材料與方法 130
第一節 儀器設備及器材 131
第二節 藥品試劑 132
第三節 實驗方法 133
第五章 結果 137
第六章 討論 163
第七章 結論 170

第二部分:探討西洋蓍草精油抗發炎之機轉 173
第一章 前言 174
第二章 文獻回顧 176
第一節 精油之簡介 176
第二節 吞噬細胞與發炎反應 176
第三節 氧化壓力與抗氧化防禦系統 182
第三章 研究目的與架構 185
第四章 材料與方法 186
第一節 儀器設備及器材 186
第二節 藥品試劑 187
第三節 實驗方法 188
第五章 結果 192
第六章 討論 211
第七章 結論 211
參考文獻 218
行政院衛生署衛生統計資料網。 http://www.doh.gov.tw/statistic/index.htm.
王永平。白血病200問。世潮。200。
Chou, S.T., Peng, H.Y., Chang, C.T., Yang, J.S., Chung, H.K., Yang, S.T., Wood, W.G., and Chung, J.G., Zanthoxylum ailanthoides Sieb and Zucc. extract inhibits growth and induces cell death through G2/M-phase arrest and activation of apoptotic signals in colo 205 human colon adenocarcinoma cells. Anticancer Res, 2011. 31: 1667-76.
Rajkumar, V., Guha, G., and Kumar, R.A., Antioxidant and anti-neoplastic activities of Picrorhiza kurroa extracts. Food Chem Toxicol, 2011. 49: 363-9.
Chen, X., Pei, L., Zhong, Z., Guo, J., Zhang, Q., and Wang, Y., Anti-tumor potential of ethanol extract of Curcuma phaeocaulis Valeton against breast cancer cells. Phytomedicine, 2011. 18: 1238-43.
Sa, F., Gao, J.L., Fung, K.P., Zheng, Y., Lee, S.M., and Wang, Y.T., Anti-proliferative and pro-apoptotic effect of Smilax glabra Roxb. extract on hepatoma cell lines. Chem Biol Interact, 2008. 171: 1-14.
Steinmetz, K.A. and Potter, J.D., Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc, 1996. 96: 1027-39.
Chen, C., Shen, G., Hebbar, V., Hu, R., Owuor, E.D., and Kong, A.N., Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis, 2003. 24: 1369-78.
Timur, M., Akbas, S.H., and Ozben, T., The effect of Topotecan on oxidative stress in MCF-7 human breast cancer cell line. Acta Biochim Pol, 2005. 52: 897-902.
Chung, Y.-C., Chien, C.-T., Teng, K.-Y., and Chou, S.-T., Antioxidative and mutagenic properties of Zanthoxylum ailanthoides Sieb & zucc. Food Chem, 2006. 97: 418-425.
台灣產芸香科植物介紹 (IX)花椒屬2。 自然保育季刊春季刊, 1997. 17。
楊錦程。芸香科植物紅刺蔥莖部之抗氧化活性成分及藍雪科植物白花藤根部之抗線蟲活性成分之研究。國立中興大學化學研究所碩士論文。1999。
簡錦慈。刺蔥之抗氧化性及安全性探討。私立靜宜大學食品營養學系。2004。
吳采柔。刺蔥萃取物對缺血再灌流損傷之大鼠腦組織氧化傷害效用之研究。 私立靜宜大學食品營養學系碩士論文。 2006。
Miccadei, S., Di Venere, D., Cardinali, A., Romano, F., Durazzo, A., Foddai, M.S., Fraioli, R., Mobarhan, S., and Maiani, G., Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells. Nutr Cancer, 2008. 60: 276-83.
Chen, Y.H., Chen, H.Y., Hsu, C.L., and Yen, G.C., Induction of apoptosis by the Lactuca indica L. in human leukemia cell line and its active components. J Agric Food Chem, 2007. 55: 1743-9.
Kurata, R., Adachi, M., Yamakawa, O., and Yoshimoto, M., Growth suppression of human cancer cells by polyphenolics from sweetpotato (Ipomoea batatas L.) leaves. J Agric Food Chem, 2007. 55: 185-90.
Bown, S.G. and Lovat, L.B., The biology of photodynamic therapy in the gastrointestinal tract. Gastrointest Endosc Clin N Am, 2000. 10: 533-50.
Lee, W.-Y., Lim, D.-S., Ko, S.-H., Park, Y.-J., Ryu, K.-S., Ahn, M.-Y., Kim, Y.-R., Lee, D.W., and Cho, C.-W., Photoactivation of pheophorbide a induces a mitochondrial-mediated apoptosis in Jurkat leukaemia cells. J Photochem Photobiol B, 2004. 75: 119-126.
Chan, J.Y., Tang, P.M., Hon, P.M., Au, S.W., Tsui, S.K., Waye, M.M., Kong, S.K., Mak, T.C., and Fung, K.P., Pheophorbide a, a major antitumor component purified from Scutellaria barbata, induces apoptosis in human hepatocellular carcinoma cells. Planta Med, 2006. 72: 28-33.
Tang, P.M., Chan, J.Y., Au, S.W., Kong, S.K., Tsui, S.K., Waye, M.M., Mak, T.C., Fong, W.P., and Fung, K.P., Pheophorbide a, an active compound isolated from Scutellaria barbata, possesses photodynamic activities by inducing apoptosis in human hepatocellular carcinoma. Cancer Biol Ther, 2006. 5: 1111-6.
Tang, P.M., Zhang, D.M., Xuan, N.H., Tsui, S.K., Waye, M.M., Kong, S.K., Fong, W.P., and Fung, K.P., Photodynamic therapy inhibits P-glycoprotein mediated multidrug resistance via JNK activation in human hepatocellular carcinoma using the photosensitizer pheophorbide a. Mol Cancer, 2009. 8: 56.
Lee, W.Y., Lim, D.S., Ko, S.H., Park, Y.J., Ryu, K.S., Ahn, M.Y., Kim, Y.R., Lee, D.W., and Cho, C.W., Photoactivation of pheophorbide a induces a mitochondrial-mediated apoptosis in Jurkat leukaemia cells. J Photochem Photobiol B, 2004. 75: 119-26.
Chou, S.T., Chan, H.H., Peng, H.Y., Liou, M.J., and Wu, T.S., Isolation of substances with antiproliferative and apoptosis-inducing activities against leukemia cells from the leaves of Zanthoxylum ailanthoides Sieb. & Zucc. Phytomedicine, 2011. 18: 344-8.
Kim, J.A., Targeted therapies for the treatment of cancer. Am J Surg, 2003. 186: 264-8.
Lin, R.J., Egan, D.A., and Evans, R.M., Molecular genetics of acute promyelocytic leukemia. Trends Genet, 1999. 15: 179-84.
Boda, D. and Virag, I., Early results of Vinblastin therapy in childhood tumours. Ther Hung, 1970. 18: 15-9.
Collins, I. and Garrett, M.D., Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr Opin Pharmacol, 2005. 5: 366-73.
Smith, M.L. and Fornace, A.J., Jr., Mammalian DNA damage-inducible genes associated with growth arrest and apoptosis. Mutat Res, 1996. 340: 109-24.
Sherr, C.J. and Roberts, J.M., CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 1999. 13: 1501-12.
Sherr, C.J., The Pezcoller lecture: cancer cell cycles revisited. Cancer Res, 2000. 60: 3689-95.
King, R.W., Jackson, P.K., and Kirschner, M.W., Mitosis in transition. Cell, 1994. 79: 563-71.
Medema, R.H., Herrera, R.E., Lam, F., and Weinberg, R.A., Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc Natl Acad Sci U S A, 1995. 92: 6289-93.
Reed, J.C., Mechanisms of apoptosis avoidance in cancer. Curr Opin Oncol, 1999. 11: 68-75.
Afford, S. and Randhawa, S., Apoptosis. Mol Pathol, 2000. 53: 55-63.
Afford, S.C., Randhawa, S., Eliopoulos, A.G., Hubscher, S.G., Young, L.S., and Adams, D.H., CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface fas ligand expression and amplifies fas-mediated hepatocyte death during allograft rejection. J Exp Med, 1999. 189: 441-6.
Green, D.R. and Kroemer, G., The pathophysiology of mitochondrial cell death. Science, 2004. 305: 626-9.
Kim, R., Unknotting the roles of Bcl-2 and Bcl-xL in cell death. Biochem Biophys Res Commun, 2005. 333: 336-43.
Ibrado, A.M., Huang, Y., Fang, G., Liu, L., and Bhalla, K., Overexpression of Bcl-2 or Bcl-xL inhibits Ara-C-induced CPP32/Yama protease activity and apoptosis of human acute myelogenous leukemia HL-60 cells. Cancer Res, 1996. 56: 4743-8.
Packham, G. and Stevenson, F.K., Bodyguards and assassins: Bcl-2 family proteins and apoptosis control in chronic lymphocytic leukaemia. Immunology, 2005. 114: 441-9.
Nicholson, D.W. and Thornberry, N.A., Caspases: killer proteases. Trends Biochem Sci, 1997. 22: 299-306.
Fiers, W., Beyaert, R., Declercq, W., and Vandenabeele, P., More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene, 1999. 18: 7719-30.
Lu, Y. and Chen, G.Q., Effector caspases and leukemia. Int J Cell Biol, 2011. 2011: 738301.
Papatsoris, A.G. and Papavassiliou, A.G., Molecular 'palpation' of BPH: a tale of MAPK signalling? Trends Mol Med, 2001. 7: 288-92.
Pandey, K.B. and Rizvi, S.I., Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev, 2009. 2: 270-8.
Netzel, M., Strass, G., Kaul, C., Bitsch, I., Dietrich, H., and Bitsch, R., In vivo antioxidative capacity of a composite berry juice. Food Res Int, 2002. 35: 213-216.
Curtin, J.F., Donovan, M., and Cotter, T.G., Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods, 2002. 265: 49-72.
McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y., and Holbrook, N.J., Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol, 2001. 21: 1249-59.
林天送。氫氧自由基。毒性極高的破壞分子。健康世界。1995。112: 6-10。
Esterbauer, H., Schaur, R.J., and Zollner, H., Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med, 1991. 11: 81-128.
Moore, K.P., Darley-Usmar, V., Morrow, J., and Roberts, L.J., 2nd, Formation of F2-isoprostanes during oxidation of human low-density lipoprotein and plasma by peroxynitrite. Circ Res, 1995. 77: 335-41.
Mates, J.M., Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology, 2000. 153: 83-104.
Niki, E.-. Active oxygens and free radicals in biology. J Jpn Oil Chem Soc, 1992. 41: 766-773.
呂鋒洲。抗氧化酵素之介紹。自由基生物學與醫學。1993. 1: 1-17。
Seven, A., Erbil, Y., Seven, R., Inci, F., Gulyasar, T., Barutcu, B. and Candan, G., Breast cancer and benign breast disease patients evaluated in relation to oxidative stress. . Cancer Biochem Biophts, 1998. 16: 333-336.
Abdel-Aziz, A.F. and El-Naggar, M.M., Superoxide dismutase activities in serum and white blood cells of patients with some malignancies. Cancer Letters, 1997. 113: 61-64.
Kuvshinnikov, V.A., Morozkina, T. S., Svirnovskiĭ, A. I., Poliakova, Z. I., Stre'lnikov, A. V., Oletskiĭ, E. I., Shkrebneva, I. I. and Sukolinskiĭ, V. N. (1989) . l 34:23-8., Use of the antioxidant complex of vitamins A, E and C in murine leukemia. Gematol Transfuziol, 1989. 34: 23-29.
Curtin, J.F., Donovan, M., and Cotter, T.G., Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods, 2002. 265: 49-72.
Hockenbery, D.M., Oltvai, Z.N., Yin, X.M., Milliman, C.L., and Korsmeyer, S.J., Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell, 1993. 75: 241-51.
Franco, R. and Cidlowski, J.A., Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ, 2009. 16: 1303-14.
Circu, M.L. and Aw, T.Y., Glutathione and apoptosis. Free Radic Res, 2008. 42: 689-706.
Franco, R., Schoneveld, O.J., Pappa, A., and Panayiotidis, M.I., The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem, 2007. 113: 234-58.
Armstrong, J.S., Whiteman, M., Yang, H., Jones, D.P., and Sternberg, P., Jr., Cysteine starvation activates the redox-dependent mitochondrial permeability transition in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci, 2004. 45: 4183-9.
Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983. 65: 55-63.
Sladowski, D., Steer, S.J., Clothier, R.H., and Balls, M., An improved MTT assay. J Immunol Methods, 1993. 157: 203-7.
Darzynkiewicz, Z., Bruno, S., Del Bino, G., Gorczyca, W., Hotz, M.A., Lassota, P., and Traganos, F., Features of apoptotic cells measured by flow cytometry. Cytometry, 1992. 13: 795-808.
Petit, P.X., O'Connor, J.E., Grunwald, D., and Brown, S.C., Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications. Eur J Biochem, 1990. 194: 389-97.
Royall, J.A. and Ischiropoulos, H., Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys, 1993. 302: 348-55.
Kruman, II and Mattson, M.P., Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J Neurochem, 1999. 72: 529-40.
Kubista, M., Akerman, B., and Norden, B., Characterization of interaction between DNA and 4',6-diamidino-2-phenylindole by optical spectroscopy. Biochemistry, 1987. 26: 4545-53.
Kassie, F., Parzefall, W., and Knasmuller, S., Single cell gel electrophoresis assay: a new technique for human biomonitoring studies. Mutat Res, 2000. 463: 13-31.
Lee, R.F. and Steinert, S., Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat Res, 2003. 544: 43-64.
Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., and Klenk, D.C., Measurement of protein using bicinchoninic acid. Anal Biochem, 1985. 150: 76-85.
Yang, C.S., Chou, S.T., Liu, L., Tsai, P.J., and Kuo, J.S., Effect of ageing on human plasma glutathione concentrations as determined by high-performance liquid chromatography with fluorimetric detection. J Chromatogr B Biomed Appl, 1995. 674: 23-30.
Paglia, D.E. and Valentine, W.N., Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med, 1967. 70: 158-69.
Marklund, S. and Marklund, G., Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem, 1974. 47: 469-74.
Bergmeyer, H.U., [Measurement of catalase activity]. Biochem Z, 1955. 327: 255-8.
Young, I.S. and Trimble, E.R., Measurement of malondialdehyde in plasma by high performance liquid chromatography with fluorimetric detection. Ann Clin Biochem, 1991. 28 ( Pt 5): 504-8.
Zheng, X.L., Sun, H.X., Liu, X.L., Chen, Y.X., and Qian, B.C., Astilbic acid induced COLO 205 cell apoptosis by regulating Bcl-2 and Bax expression and activating caspase-3. Acta Pharmacol Sin, 2004. 25: 1090-5.
Muto, N., Tomokuni, T., Haramoto, M., Tatemoto, H., Nakanishi, T., Inatomi, Y., Murata, H., and Inada, A., Isolation of apoptosis- and differentiation-inducing substances toward human promyelocytic leukemia HL-60 cells from leaves of Juniperus taxifolia. Biosci Biotechnol Biochem, 2008. 72: 477-84.
Shimizu, M., Deguchi, A., Lim, J.T., Moriwaki, H., Kopelovich, L., and Weinstein, I.B., (-)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin Cancer Res, 2005. 11: 2735-46.
McKelvey-Martin, V.J., Green, M.H., Schmezer, P., Pool-Zobel, B.L., De Meo, M.P., and Collins, A., The single cell gel electrophoresis assay (comet assay): a European review. Mutat Res, 1993. 288: 47-63.
Fairbairn, D.W., Olive, P.L., and O'Neill, K.L., The comet assay: a comprehensive review. Mutat Res, 1995. 339: 37-59.
Wyllie, A.H., Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature, 1980. 284: 555-6.
Liu, X., Zou, H., Slaughter, C., and Wang, X., DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell, 1997. 89: 175-84.
Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A., and Yuan, J., Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature, 2000. 403: 98-103.
Ohsato, T., Ishihara, N., Muta, T., Umeda, S., Ikeda, S., Mihara, K., Hamasaki, N., and Kang, D., Mammalian mitochondrial endonuclease G. Digestion of R-loops and localization in intermembrane space. Eur J Biochem, 2002. 269: 5765-70.
Li, L.Y., Luo, X., and Wang, X., Endonuclease G is an apoptotic DNase when released from mitochondria. Nature, 2001. 412: 95-9.
Hong, S.J., Dawson, T.M., and Dawson, V.L., Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci, 2004. 25: 259-64.
Wang, Z.B., Liu, Y.Q., and Cui, Y.F., Pathways to caspase activation. Cell Biol Int, 2005. 29: 489-96.
Bhattacharyya, A., Lahiry, L., Mandal, D., Sa, G., and Das, T., Black tea induces tumor cell apoptosis by Bax translocation, loss in mitochondrial transmembrane potential, cytochrome c release and caspase activation. Int J Cancer, 2005. 117: 308-15.
Knauf, U., Jakob, U., Engel, K., Buchner, J., and Gaestel, M., Stress- and mitogen-induced phosphorylation of the small heat shock protein Hsp25 by MAPKAP kinase 2 is not essential for chaperone properties and cellular thermoresistance. EMBO J, 1994. 13: 54-60.
Kulisz, A., Chen, N., Chandel, N.S., Shao, Z., and Schumacker, P.T., Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am J Physiol Lung Cell Mol Physiol, 2002. 282: L1324-9.
Matthews, G.M., Howarth, G.S., and Butler, R.N., Nutrient and antioxidant modulation of apoptosis in gastric and colon cancer cells. Cancer Biol Ther, 2006. 5: 569-72.
Cristofanon, S., Dicato, M., Ghibelli, L., and Diederich, M., RETRACTED: Glutathione as a mediator of apoptotic cell signaling pathways. Biochem Pharmacol, 2006.
Davis, W., Jr., Ronai, Z., and Tew, K.D., Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther, 2001. 296: 1-6.
Park, H.Y., Kosmadaki, M., Yaar, M., and Gilchrest, B.A., Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci, 2009. 66: 1493-506.
Gilchrest, B.A., Park, H.Y., Eller, M.S., and Yaar, M., Mechanisms of ultraviolet light-induced pigmentation. Photochem Photobiol, 1996. 63: 1-10.
Benedetto, J.P., Ortonne, J.P., Voulot, C., Khatchadourian, C., Prota, G., and Thivolet, J., Role of thiol compounds in mammalian melanin pigmentation: Part I. Reduced and oxidized glutathione. J Invest Dermatol, 1981. 77: 402-5.
del Marmol, V., Solano, F., Sels, A., Huez, G., Libert, A., Lejeune, F., and Ghanem, G., Glutathione depletion increases tyrosinase activity in human melanoma cells. J Invest Dermatol, 1993. 101: 871-4.
Wood, J.M., Jimbow, K., Boissy, R.E., Slominski, A., Plonka, P.M., Slawinski, J., Wortsman, J., and Tosk, J., What's the use of generating melanin? Exp Dermatol, 1999. 8: 153-64.
Gillbro, J.M. and Olsson, M.J., The melanogenesis and mechanisms of skin-lightening agents – existing and new approaches. Int J Cosmet Sci, 2011. 33: 210-221.
Bertolotto, C., Busca, R., Abbe, P., Bille, K., Aberdam, E., Ortonne, J.P., and Ballotti, R., Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol Cell Biol, 1998. 18: 694-702.
Robbins, L.S., Nadeau, J.H., Johnson, K.R., Kelly, M.A., Roselli-Rehfuss, L., Baack, E., Mountjoy, K.G., and Cone, R.D., Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell, 1993. 72: 827-34.
Chou, T.-H., Ding, H.-Y., Hung, W.J., and Liang, C.-H., Antioxidative characteristics and inhibition of α-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare. Exp Dermatol, 2010. 19: 742-750.
Tu, C.-X., Lin, M., Lu, S.-S., Qi, X.-Y., Zhang, R.-X., and Zhang, Y.-Y., Curcumin Inhibits Melanogenesis in Human Melanocytes. Phytother Res, 2012. 26: 174-179.
Lee, J., Kim, Y.S., and Park, D., Rosmarinic acid induces melanogenesis through protein kinase A activation signaling. Biochem Pharmacol, 2007. 74: 960-968.
Csupor-Löffler, B., Hajdú, Z., Zupkó, I., Réthy, B., Falkay, G., Forgo, P., and Hohmann, J., Antiproliferative effect of flavonoids and sesquiterpenoids from Achillea millefolium s.l. on cultured human tumour cell lines. Phytother Res, 2009. 23: 672-676.
Saab, A.M., Tundis, R., Loizzo, M.R., Lampronti, I., Borgatti, M., Gambari, R., Menichini, F., and Esseily, F., Antioxidant and antiproliferative activity of Laurus nobilis L. (Lauraceae) leaves and seeds essential oils against K562 human chronic myelogenous leukaemia cells. Nat Prod Res, 2011.
Prashar, A., Locke, I.C., and Evans, C.S., Cytotoxicity of lavender oil and its major components to human skin cells. Cell Proliferation, 2004. 37: 221-229.
易光輝、王曉芬、李依倩。精油之化學基礎與實務應用。華杏出版股份有限公司。 2008。
歐明秋、游銅錫、林麗雲。植物化學。華杏出版股份有限公司。 2009。
Sangwan, N.S., Farooqi, A.H.A., Shabih, F., and Sangwan, R.S., Regulation of essential oil production in plants. Plant Growth Regulation, 2001. 34: 3-21.
Şahin, F., Güllüce, M., Daferera, D., Sökmen, A., Sökmen, M., Polissiou, M., Agar, G., and Özer, H., Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control, 2004. 15: 549-557.
Puertas-Mejía, M., Hillebrand, S., Stashenko, E., and Winterhalter, P., In vitro radical scavenging activity of essential oils from Columbian plants and fractions from oregano (Origanum vulgare L.) essential oil. Flavour Fragr J., 2002. 17: 380-384.
Tepe, B., Donmez, E., Unlu, M., Candan, F., Daferera, D., Vardar-Unlu, G., Polissiou, M., and Sokmen, A., Antimicrobial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha (Montbret et Aucher ex Benth.) and Salvia multicaulis (Vahl). Food Chem, 2004. 84: 519-525.
Bakkali, F., Averbeck, S., Averbeck, D., Zhiri, A., and Idaomar, M., Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae. Mutat Res, 2005. 585: 1-13.
Hashim, S., Aboobaker, V.S., Madhubala, R., Bhattacharya, R.K., and Rao, A.R., Modulatory effects of essential oils from spices on the formation of DNA adduct by aflatoxin B1 in vitro. Nutr and Cancer, 1994. 21: 169-175.
Burt, S., Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol, 2004. 94: 223-253.
Wang, S.-Y., Chen, P.-F., and Chang, S.-T., Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresour Technol, 2005. 96: 813-818.
Saenz, M.T., Tornos, M.P., Alvarez, A., Fernandez, M.A., and García, M.D., Antibacterial activity of essential oils of Pimenta racemosa var. terebinthina and Pimenta racemosa var. grisea. Fitoterapia, 2004. 75: 599-602.
Murakami, Y., Shoji, M., Hanazawa, S., Tanaka, S., and Fujisawa, S., Preventive effect of bis-eugenol, a eugenol ortho dimer, on lipopolysaccharide-stimulated nuclear factor kappa B activation and inflammatory cytokine expression in macrophages. Biochem Pharmacol, 2003. 66: 1061-1066.
Kim, S.S., Oh, O.J., Min, H.-Y., Park, E.-J., Kim, Y., Park, H.J., Nam Han, Y., and Lee, S.K., Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sci, 2003. 73: 337-348.
Silva, J., Abebe, W., Sousa, S.M., Duarte, V.G., Machado, M.I., and Matos, F.J., Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J Ethnopharmacol, 2003. 89: 277-83.
Tipton, D.A., Lyle, B., Babich, H., and Dabbous, M., In vitro cytotoxic and anti-inflammatory effects of myrrh oil on human gingival fibroblasts and epithelial cells. Toxicol In Vitro, 2003. 17: 301-10.
Sharma, P.R., Mondhe, D.M., Muthiah, S., Pal, H.C., Shahi, A.K., Saxena, A.K., and Qazi, G.N., Anticancer activity of an essential oil from Cymbopogon flexuosus. Chem Biol Interact, 2009. 179: 160-168.
Lima, C.F., Carvalho, F., Fernandes, E., Bastos, M.L., Santos-Gomes, P.C., Fernandes-Ferreira, M., and Pereira-Wilson, C., Evaluation of toxic/protective effects of the essential oil of Salvia officinalis on freshly isolated rat hepatocytes. Toxicol In Vitro, 2004. 18: 457-65.
Hartwell, J., Plants used against cancer. J Nat Prod, 1968. 31: 71-170.
Li, Y., Zhang, M.L., Cong, B., Wang, S.M., Dong, M., Sauriol, F., Huo, C.H., Shi, Q.W., Gu, Y.C., and Kiyota, H., Achillinin A, a cytotoxic guaianolide from the flower of Yarrow, Achillea millefolium. Biosci Biotechnol Biochem, 2011. 75: 1554-6.
Orav, A., Arak, E., and Raal, A., Phytochemical analysis of the essential oil of Achillea millefolium L. from various European Countries. Nat Prod Res, 2006. 20: 1082-1088.
Costin, G.-E. and Hearing, V.J., Human skin pigmentation: melanocytes modulate skin color in response to stress The FASEB J, 2007. 976-994.
Nelson, A.A. and Tsao, H., Melanoma and genetics. Clin Dermatol, 2009. 27: 46-52.
Ito, S. and Wakamatsu, K., Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res, 2003. 16: 523-31.
del Marmol, V., Ito, S., Jackson, I., Vachtenheim, J., Berr, P., Ghanem, G., Morandini, R., Wakamatsu, K., and Huez, G., TRP-1 expression correlates with eumelanogenesis in human pigment cells in culture. FEBS Lett, 1993. 327: 307-10.
Kuzumaki, T., Matsuda, A., Wakamatsu, K., Ito, S., and Ishikawa, K., Eumelanin biosynthesis is regulated by coordinate expression of tyrosinase and tyrosinase-related protein-1 genes. Exp Cell Res, 1993. 207: 33-40.
Brown, D.A., Skin pigmentation enhancers. J Photochem Photobiol B, 2001. 63: 148-61.
Brzoska, T., Luger, T.A., Maaser, C., Abels, C., and Bohm, M., Alpha-melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr Rev, 2008. 29: 581-602.
Slominski, A., Tobin, D.J., Shibahara, S., and Wortsman, J., Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev, 2004. 84: 1155-228.
Rouzaud, F., Kadekaro, A.L., Abdel-Malek, Z.A., and Hearing, V.J., MC1R and the response of melanocytes to ultraviolet radiation. Mutat Res, 2005. 571: 133-52.
Rees, J.L., The genetics of sun sensitivity in humans. Am J Hum Genet, 2004. 75: 739-51.
Tamate, H.B. and Takeuchi, T., Action of the e locus of mice in the response of phaeomelanic hair follicles to alpha-melanocyte-stimulating hormone in vitro. Science, 1984. 224: 1241-2.
Seger, R. and Krebs, E.G., The MAPK signaling cascade. FASEB J, 1995. 9: 726-35.
Singh, S.K., Sarkar, C., Mallick, S., Saha, B., Bera, R., and Bhadra, R., Human placental lipid induces melanogenesis through p38 MAPK in B16F10 mouse melanoma. Pigment Cell Res, 2005. 18: 113-21.
Bu, J., Ma, P.C., Chen, Z.Q., Zhou, W.Q., Fu, Y.J., Li, L.J., and Li, C.R., Inhibition of MITF and tyrosinase by paeonol-stimulated JNK/SAPK to reduction of phosphorylated CREB. Am J Chin Med, 2008. 36: 245-63.
Hemesath, T.J., Price, E.R., Takemoto, C., Badalian, T., and Fisher, D.E., MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature, 1998. 391: 298-301.
Tu, C.X., Lin, M., Lu, S.S., Qi, X.Y., Zhang, R.X., and Zhang, Y.Y., Curcumin inhibits melanogenesis in human melanocytes. Phytother Res, 2012. 26: 174-9.
Wood, J.M., Chavan, B., Hafeez, I., and Schallreuter, K.U., Regulation of tyrosinase by tetrahydropteridines and H2O2. Biochem Biophys Res Commun, 2004. 325: 1412-7.
Meister, A. and Tate, S.S., Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization. Annu Rev Biochem, 1976. 45: 559-604.
Halprin, K.M. and Ohkawara, A., Glutathione and human pigmentation. Arch Dermatol, 1966. 94: 355-7.
Villarama, C.D. and Maibach, H.I., Glutathione as a depigmenting agent: an overview. Int J Cosmet Sci, 2005. 27: 147-53.
Rothman, S., Krysa, H.F., and Smiljanic, A.M., Inhibitory-action of human epidermis on melanin formation. Proc Soc Exp Biol Med, 1946. 62: 208.
Flesch, P., Inhibitory action of extracts of mammalian skin on pigment formation. Proc Soc Exp Biol Med, 1949. 70: 136-40.
Prota, G., Recent advances in the chemistry of melanogenesis in mammals. J Invest Dermatol, 1980. 75: 122-7.
Norris, D.A., Capin, L., Wugua, J.J., Osborn, R.L., Zerbe, G.O., Bystryn, J.C., and Tonnesen, M.G., Enhanced susceptibility of melanocytes to different Immunologic effector mechanisms In vitro: potential mechanisms for postinflammatory hypopigmentation and vitiligo. Pigment Cell Res, 1988. 1: 113-23.
Perluigi, M., De Marco, F., Foppoli, C., Coccia, R., Blarzino, C., Marcante, M.L., and Cini, C., Tyrosinase protects human melanocytes from ROS-generating compounds. Biochem Biophys Res Commun, 2003. 305: 250-6.
Kim, Y.J. and Yokozawa, T., Modulation of oxidative stress and melanogenesis by proanthocyanidins. Biol Pharm Bull, 2009. 32: 1155-9.
Wozniak, A., Wozniak, B., Drewa, G., and Drewa, T., Lipid peroxidation and antioxidant capacity in selected tissues of healthy black C57BL/6J mice and B16 melanoma-bearing mice. Melanoma Res, 2003. 13: 19-22.
Panich, U., Tangsupa-a-nan, V., Onkoksoong, T., Kongtaphan, K., Kasetsinsombat, K., Akarasereenont, P., and Wongkajornsilp, A., Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system. Arch Pharm Res, 2011. 34: 811-20.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 1999. 26: 1231-7.
Maresca, V., Flori, E., Bellei, B., Aspite, N., Kovacs, D., and Picardo, M., MC1R stimulation by alpha-MSH induces catalase and promotes its re-distribution to the cell periphery and dendrites. Pigment Cell Melanoma Res, 2010. 23: 263-75.
Thanigaimalai, P., Lee, K.C., Bang, S.C., Lee, J.H., Yun, C.Y., Roh, E., Hwang, B.Y., Kim, Y., and Jung, S.H., Evaluation of 3,4-dihydroquinazoline-2(1H)-thiones as inhibitors of alpha-MSH-induced melanin production in melanoma B16 cells. Bioorg Med Chem, 2010. 18: 1555-62.
Seo, W.D., Ryu, Y.B., Curtis-Long, M.J., Lee, C.W., Ryu, H.W., Jang, K.C., and Park, K.H., Evaluation of anti-pigmentary effect of synthetic sulfonylamino chalcone. Eur J Med Chem, 2010. 45: 2010-7.
Robak, J. and Gryglewski, R.J., Flavonoids are scavengers of superoxide anions. Biochem Pharmacol, 1988. 37: 837-41.
Ahmed, S.B., Sghaier, R.M., Guesmi, F., Kaabi, B., Mejri, M., Attia, H., Laouini, D., and Smaali, I., Evaluation of antileishmanial, cytotoxic and antioxidant activities of essential oils extracted from plants issued from the leishmaniasis-endemic region of Sned (Tunisia). Nat Prod Res, 2011. 25: 1195-201.
Di Sotto, A., Mazzanti, G., Carbone, F., Hrelia, P., and Maffei, F., Genotoxicity of lavender oil, linalyl acetate, and linalool on human lymphocytes in vitro. Environmental and Molecular Mutagenesis, 2011. 52: 69-71.
Yoshimura, H., Sawai, Y., Tamotsu, S., and Sakai, A., 1,8-cineole inhibits both proliferation and elongation of BY-2 cultured tobacco cells. J Chem Ecol, 2011. 37: 320-8.
Song, H.S. and Sim, S.S., Acetoside inhibits α-MSH-induced melanin production in B16 melanoma cells by inactivation of adenyl cyclase. J Pharm Pharmacol, 2009. 61: 1347-1351.
Huang, H.C., Chiu, S.H., and Chang, T.M., Inhibitory effect of [6]-gingerol on melanogenesis in B16F10 melanoma cells and a possible mechanism of action. Biosci Biotechnol Biochem, 2011. 75: 1067-72.
Kim, Y.J., Antimelanogenic and antioxidant properties of gallic acid. Biol Pharm Bull, 2007. 30: 1052-5.
Kim, D.-S., Park, S.-H., and Park, K.-C., Transforming growth factor-β1 decreases melanin synthesis via delayed extracellular signal-regulated kinase activation. The International Journal of Biochemistry & Cell Biology, 2004. 36: 1482-1491.
Whitney, N.P., Eidem, T.M., Peng, H., Huang, Y., and Zheng, J.C., Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem, 2009. 108: 1343-59.
Hunter, J.D. and Doddi, M., Sepsis and the heart. Br J Anaesth, 2010. 104: 3-11.
Schmidt, M.I. and Duncan, B.B., Diabesity: an inflammatory metabolic condition. Clin Chem Lab Med, 2003. 41: 1120-30.
Porta, C., Larghi, P., Rimoldi, M., Totaro, M.G., Allavena, P., Mantovani, A., and Sica, A., Cellular and molecular pathways linking inflammation and cancer. Immunobiology, 2009. 214: 761-77.
Wiseman, H. and Halliwell, B., Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J, 1996. 313 ( Pt 1): 17-29.
Burkhart, C.G., Burkhart, C.N., and Lehmann, P.F., Acne: a review of immunologic and microbiologic factors. Postgrad Med J, 1999. 75: 328-31.
Webster, G.F. and Leyden, J.J., Characterization of serum-independent polymorphonuclear leukocyte chemotactic factors produced by Propionibacterium acnes. Inflammation, 1980. 4: 261-9.
Alexander, C. and Rietschel, E.T., Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res, 2001. 7: 167-202.
Srisook, K. and Cha, Y.N., Biphasic induction of heme oxygenase-1 expression in macrophages stimulated with lipopolysaccharide. Biochem Pharmacol, 2004. 68: 1709-20.
Chou, S.-T., Lai, C.-P., Lin, C.-C., and Shih, Y., Study of the chemical composition, antioxidant activity and anti-inflammatory activity of essential oil from Vetiveria zizanioides. Food Chem, 2012. 134: 262-268.
Kim, J.Y., Oh, T.H., Kim, B.J., Kim, S.S., Lee, N.H., and Hyun, C.G., Chemical composition and anti-inflammatory effects of essential oil from Farfugium japonicum flower. J Oleo Sci, 2008. 57: 623-8.
Dung, N.T., Bajpai, V.K., Yoon, J.I., and Kang, S.C., Anti-inflammatory effects of essential oil isolated from the buds of Cleistocalyx operculatus (Roxb.) Merr and Perry. Food Chem Toxicol, 2009. 47: 449-53.
Bakkali, F., Averbeck, S., Averbeck, D., and Idaomar, M., Biological effects of essential oils--a review. Food Chem Toxicol, 2008. 46: 446-75.
Lopes-Lutz, D., Alviano, D.S., Alviano, C.S., and Kolodziejczyk, P.P., Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry, 2008. 69: 1732-8.
Kilani, S., Ledauphin, J., Bouhlel, I., Ben Sghaier, M., Boubaker, J., Skandrani, I., Mosrati, R., Ghedira, K., Barillier, D., and Chekir-Ghedira, L., Comparative study of Cyperus rotundus essential oil by a modified GC/MS analysis method. Evaluation of its antioxidant, cytotoxic, and apoptotic effects. Chem Biodivers, 2008. 5: 729-42.
Kumar, A., Malik, F., Bhushan, S., Sethi, V.K., Shahi, A.K., Kaur, J., Taneja, S.C., Qazi, G.N., and Singh, J., An essential oil and its major constituent isointermedeol induce apoptosis by increased expression of mitochondrial cytochrome c and apical death receptors in human leukaemia HL-60 cells. Chem Biol Interact, 2008. 171: 332-47.
Prabuseenivasan, S., Jayakumar, M., and Ignacimuthu, S., In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med, 2006. 6: 39.
張文正。圖解免疫學。合計圖書出版社。1999。260-261。
陳建和。基礎醫學免疫學. 。藝軒圖書出版社。2002。73-77。
Visintin, A., Halmen, K.A., Latz, E., Monks, B.G., and Golenbock, D.T., Pharmacological inhibition of endotoxin responses is achieved by targeting the TLR4 coreceptor, MD-2. J Immunol, 2005. 175: 6465-72.
Kim, S.S., Oh, O.J., Min, H.Y., Park, E.J., Kim, Y., Park, H.J., Nam Han, Y., and Lee, S.K., Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sci, 2003. 73: 337-48.
Lin, C.T., Chen, C.J., Lin, T.Y., Tung, J.C., and Wang, S.Y., Anti-inflammation activity of fruit essential oil from Cinnamomum insularimontanum Hayata. Bioresour Technol, 2008. 99: 8783-7.
Tung, Y.T., Chua, M.T., Wang, S.Y., and Chang, S.T., Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresour Technol, 2008. 99: 3908-13.
Brown, G.C. and Borutaite, V., Interactions between nitric oxide, oxygen, reactive oxygen species and reactive nitrogen species. Biochem Soc Trans, 2006. 34: 953-6.
Berliner, J.A., Navab, M., Fogelman, A.M., Frank, J.S., Demer, L.L., Edwards, P.A., Watson, A.D., and Lusis, A.J., Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation, 1995. 91: 2488-96.
Brown, G.C. and Borutaite, V., Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic Biol Med, 2002. 33: 1440-50.
周正修、周稚傑、羅慶徽。非類固醇抗發炎藥劑及心臟血管事件的相關性。基醫學。2007。22: 147-152。
O'Neill, G.P. and Ford-Hutchinson, A.W., Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett, 1993. 330: 156-60.
Li, J., Chen, X., Dong, X., Xu, Z., Jiang, H., and Sun, X., Specific COX-2 inhibitor, meloxicam, suppresses proliferation and induces apoptosis in human HepG2 hepatocellular carcinoma cells. J Gastroenterol Hepatol, 2006. 21: 1814-20.
Otterbein, L.E. and Choi, A.M., Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol, 2000. 279: L1029-37.
Slebos, D.J., Ryter, S.W., and Choi, A.M., Heme oxygenase-1 and carbon monoxide in pulmonary medicine. Respir Res, 2003. 4: 7.
Dulak, J. and Jozkowicz, A., Carbon monoxide -- a "new" gaseous modulator of gene expression. Acta Biochim Pol, 2003. 50: 31-47.
Hsu, H.-Y., Chu, L.-C., Hua, K.-F., and Chao, L.K., Heme oxygenase-1 mediates the anti-inflammatory effect of Curcumin within LPS-stimulated human monocytes. J Cell Physiol., 2008. 215: 603-612.
Xie, Q.W., Cho, H.J., Calaycay, J., Mumford, R.A., Swiderek, K.M., Lee, T.D., Ding, A., Troso, T., and Nathan, C., Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science, 1992. 256: 225-8.
Csupor-Loffler, B., Hajdu, Z., Zupko, I., Rethy, B., Falkay, G., Forgo, P., and Hohmann, J., Antiproliferative effect of flavonoids and sesquiterpenoids from Achillea millefolium s.l. on cultured human tumour cell lines. Phytother Res, 2009. 23: 672-6.
Candan, F., Unlu, M., Tepe, B., Daferera, D., Polissiou, M., Sokmen, A., and Akpulat, H.A., Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J Ethnopharmacol, 2003. 87: 215-20.
Yen, G.C. and Lai, H.H., Inhibitory effects of isoflavones on nitric oxide- or peroxynitrite-mediated DNA damage in RAW 264.7 cells and phiX174 DNA. Food Chem Toxicol, 2002. 40: 1433-40.
Mizutani, K., Ikeda, K., Nishikata, T., and Yamori, Y., Phytoestrogens attenuate oxidative DNA damage in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. J Hypertens, 2000. 18: 1833-40.
Wang, J. and Mazza, G., Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-gamma-activated RAW 264.7 macrophages. J Agric Food Chem, 2002. 50: 850-7.
Zhuang, J.C. and Wogan, G.N., Growth and viability of macrophages continuously stimulated to produce nitric oxide. Proc Natl Acad Sci U S A, 1997. 94: 11875-80.
Kim, I.D. and Ha, B.J., Paeoniflorin protects RAW 264.7 macrophages from LPS-induced cytotoxicity and genotoxicity. Toxicol In Vitro, 2009. 23: 1014-9.
Vivancos, M. and Moreno, J.J., beta-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic Biol Med, 2005. 39: 91-7.
Wink, D.A., Miranda, K.M., Espey, M.G., Pluta, R.M., Hewett, S.J., Colton, C., Vitek, M., Feelisch, M., and Grisham, M.B., Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox Signal, 2001. 3: 203-13.
Guo, Z., Wang, S., Jiao, Q., Xu, M., and Xu, Z., Soluble TNFR II/IgG1 Fc fusion protein treatment in the LPS-mediated septic shock of rats. Biomed Pharmacother, 2009. 63: 537-42.
Huang, G.-C., Chow, J.-M., Shen, S.-C., Yang, L.-Y., Lin, C.-W., and Chen, Y.-C., Wogonin but not Nor-wogonin inhibits lipopolysaccharide and lipoteichoic acid-induced iNOS gene expression and NO production in macrophages. International Immunopharmacology, 2007. 7: 1054-1063.
Kim, J.Y., Kim, S.S., Oh, T.H., Baik, J.S., Song, G., Lee, N.H., and Hyun, C.G., Chemical composition, antioxidant, anti-elastase, and anti-inflammatory activities of Illicium anisatum essential oil. Acta Pharm, 2009. 59: 289-300.
Yoon, W.J., Moon, J.Y., Song, G., Lee, Y.K., Han, M.S., Lee, J.S., Ihm, B.S., Lee, W.J., Lee, N.H., and Hyun, C.G., Artemisia fukudo essential oil attenuates LPS-induced inflammation by suppressing NF-kappaB and MAPK activation in RAW 264.7 macrophages. Food Chem Toxicol, 2010. 48: 1222-9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top