( 您好!臺灣時間:2024/05/21 07:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Chung, Huiying
論文名稱:熱可逆水膠Pluronic F127在組織工程上的應用
論文名稱(外文):Thermoreversible Hydrogel Pluronic F127 Application In Tissue Engineering
指導教授(外文):Kwan, Changchin
口試委員(外文):Chang, NaifangLin, ShawtaoChang, ChianingYang, Shunfa
中文關鍵詞:組織工程Pluronic F127熱可逆可注射性水膠
外文關鍵詞:Tissue EngineeringPluronic F127ThermoreversibleInjectable hydrogel
  • 被引用被引用:0
  • 點閱點閱:5067
  • 評分評分:
  • 下載下載:112
  • 收藏至我的研究室書目清單書目收藏:0
組織工程(Tissue Engineering)的興起主要的原因在於為了解決臨床上因為器官或組織的缺損或衰竭所造成的問題,希望組織工程的發展最終能夠修復、維持、改善人體組織的功能。三十多年來世界各國在組織工程領域的研究成果是非常豐碩的,但是顯少一系列由小動物到大型動物不同物種的相關研究發表,來證實的相關成果在臨床應用的可行性。
骨髓間質幹細胞(Bone Marrow Mesenchymal stem cell, MSC)是組織工程常採用的細胞種類,本論文採用自體骨髓間質幹細胞,其特點為自體細胞不用考量免疫性問題,且可輕易體外培養出足夠的細胞量。將骨髓間質幹細胞利用重組人類第二型骨形態發生蛋白(Human recombinant bone morphogenetic protein-2, rhBMP-2)引導其分化為成骨細胞。
熱可逆水膠Pluronic F127(FP127)目前已被美國食品藥物管理局(FDA)核准用於醫藥上之高分子材料,其特點為在低溫中為液態,當溫度接近人體溫度37℃時會形成凝膠狀。在實際應用上可以非常簡便的方法,在低溫中,讓MSC與PF127充份混合後,將細胞與材料支架的混合物以18號針頭注射入生物體內,經過一定時間的觀察其組織恢復情況。
In recent years, the development of tissue engineering technique has enabled as to create functional tissues with biocompatible, biodegradable polymers seeded with living cells. Tissue engineering is the application of the principles and modalities of engineering and the life sciences toward the basic perceptive of structure-function relationships in normal and pathological mammalian tissues and the growth of biological substitutes to re-establish, retain or improve functions. During the four decades, the international products of tissue engineering research is rewarding, but htere is lack of series of publication by testing small to large mammalian animals to prove the reality in practical possible clinical application.
It has been proved that mesenchymal stem cells which may develop into various cellular lineage capable of producing bone, muscle, cartilage, fat, and fibrous tissue. Bone Marrow Mesenchymal stem cells (MSCs) have been widely employed in the field of tissue engineering as primary cell source. In this dissertation, we use autologous MSCs to avoid the immunological reactions. MSCs are easly to cultivate to the desired cellular amounts. Furthermore, we utilize human recombinant bone morphogenetic protein-2 (rhBMP-2) for its oseto-induction ability to regenerate bony tissues.
Thermoreversible Pluronic F127 (FP127) has been approve by the FDA as medical polymers. The characters FP127 are liquid form in lower temperature, while becoming gel-like near human body tempateraure of 37℃. In practise it is easy to mixed MSCs evenly with FP127 in lower temperature settings, then the construct composed of cell and biomaterials, was injected to the animal hosts. the observation is carried for 6 moths in vivo.
These researches were exploited and based on previous laboratory results to test the same constructs (MSCs mixed in FP127) on alveolar bony defects in different animals such as dogs and pigs. After 6 months in vivo, the regenerated periodontal attachment apparatus was evaluated histologically and the whole regenerated bone volume was scrutinized from three-dimensional computed tomography analysis. The constructs were analysed to investigate the possibilty of practical clinical applications.
Periodontal apparatus regeneration was significantly better in the BMP-2-expressing MSCs group. New cementum and Sharpey’s fibers were observed on the denuded root surfaces in the BMP-2-expressing MSCs group, whereas incomplete healing with localized root surface resorption was noted in the control group. Post implantation, BMP-2-expressing MSCs group showed significant increase in the bone regeneration than the control one. There were different biological regeneration in different animals.
Thus, the use of autologous BMP-2-expressing MSCs/ FP127 boosted bone and periodontal apparatus regeneration in aveolar periodontal defects. This de novo approach might be suitable for clinical maxilla or mandibular bone repair and periodontal apparatus repair. This modality of BMP-2-expressing MSCs/FP127 is successful in various animals. It is expectable that FP127 and BMP-2-expressing MSCs may be the final method in tissue engineering of bone and future clinical applications.
中文摘要 I
目 錄 V
圖目錄 VII
表目錄 VIII
符號說明 IX
第一章、緒論 1
1-1 背景 1
1-2 組織工程 3
1-3 骨髓間質幹細胞 8
1-4 支架在組織工程中的作用 9
第二章、論文研究目的 15
第三章、研究方法 17
3-1 原料 17
3-2 儀器 18
3-3 耗材 18
3-4 實驗流程 20
3-5 實驗方法 21
第四章、結果與討論 33
4-1西方墨點法 33
4-2巨觀觀察 34
4-3 組織染色觀察 35
4-4 立體電腦斷層掃描 37
4-5 實驗討論 39
第五章、結論 42
參考文獻 43
Skalak R & Fox CF (1988) Tissue Engineering. NSF Workshop, UCLA Symposia on Molecular and Cell Biology, (Alan R Liss Inc, New York), pp 26-29.
Langer R & Vacanti JP (1993) Tissue engineering. Science 260(5110):920-926.
Preston SL, Alison MR, Forbes SJ, Direkze NC, Poulsom R, & Wright NA (2003) The new stem cell biology: something for everyone. Molecular pathology : MP 56(2):86-96.
Bruder SP, Jaiswal N, & Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. Journal of Cellular Biochemistry 64(2):278-294.
Cooper LF, Harris CT, Bruder SP, Kowalski R, & Kadiyala S (2001) Incipient analysis of mesenchymal stem-cell-derived osteogenesis. Journal of Dental Research 80(1):314-320.
Devine SM & Hoffman R (2000) Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Current Opinion in Hematology 7(6):358-363.
Risbud MV & Sittinger M (2002) Tissue engineering: advances in in vitro cartilage generation. Trends in Biotechnology 20(8):351-356.
Song AM, Shu R, Xie YF, Song ZC, Li HY, Liu XF, & Zhang XL (2007) A study of enamel matrix proteins on differentiation of porcine bone marrow stromal cells into cementoblasts. Cell proliferation 40(3):381-396.
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, & Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143-147.
Johnstone B, Hering TM, Caplan AI, Goldberg VM, & Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Experimental cell research 238(1):265-272.
Wakitani S, Saito T, & Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle & nerve 18(12):1417-1426.
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, & Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering 7(2):211-228.
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, & Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell 13(12):4279-4295.
Teare JA, Ramoshebi LN, & Ripamonti U (2008) Periodontal tissue regeneration by recombinant human transforming growth factor-beta 3 in Papio ursinus. Journal of Periodontal Research 43(1):1-8.
Sculean A, Chiantella GC, Arweiler NB, Becker J, Schwarz F, & Stavropoulos A (2008) Five-year clinical and histologic results following treatment of human intrabony defects with an enamel matrix derivative combined with a natural bone mineral. The International journal of periodontics & restorative dentistry 28(2):153-161.
Sculean A, Schwarz F, Chiantella GC, Arweiler NB, & Becker J (2007) Nine-year results following treatment of intrabony periodontal defects with an enamel matrix derivative: report of 26 cases. The International journal of periodontics & restorative dentistry 27(3):221-229.
Rathe F, Junker R, Chesnutt BM, & Jansen JA (2009) The effect of enamel matrix derivative (Emdogain) on bone formation: a systematic review. Tissue engineering. Part B, Reviews 15(3):215-224.
Gordon KJ & Blobe GC (2008) Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochimica et biophysica acta 1782(4):197-228.
Nie X, Tian W, Zhang Y, Chen X, Dong R, Jiang M, Chen F, & Jin Y (2006) Induction of transforming growth factor-beta 1 on dentine pulp cells in different culture patterns. Cell biology international 30(4):295-300.
Urist MR (1965) Bone: formation by autoinduction. Science 150(3698):893-899.
Ahmed TA, Dare EV, & Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue engineering. Part B, Reviews 14(2):199-215.
Yang Y & El Haj AJ (2006) Biodegradable scaffolds--delivery systems for cell therapies. Expert opinion on biological therapy 6(5):485-498.
Hall H (2007) Modified fibrin hydrogel matrices: both, 3D-scaffolds and local and controlled release systems to stimulate angiogenesis. Current pharmaceutical design 13(35):3597-3607.
Friedenstein AJ (1976) Precursor cells of mechanocytes. International review of cytology 47:327-359.
Chen FM & Jin Y (2010) Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue engineering. Part B, Reviews 16(2):219-255.
Kim SH, Kim KH, Seo BM, Koo KT, Kim TI, Seol YJ, Ku Y, Rhyu IC, Chung CP, & Lee YM (2009) Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: a pilot study. Journal of Periodontology 80(11):1815-1823.
Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529-2543.
Miyazaki S, Takeuchi S, Yokouchi C, & Takada M (1984) Pluronic F-127 gels as a vehicle for topical administration of anticancer agents. Chemical and Pharmaceutical Bulletin 32(10):4205-4208.
Chen YL, Chen PK, Jeng LB, Huang CS, Yang LC, Chung HY, & Chang SC (2008) Periodontal regeneration using ex vivo autologous stem cells engineered to express the BMP-2 gene: an alternative to alveolaplasty. Gene Ther 15(22):1469-1477.
Chang SC, Chuang HL, Chen YR, Chen JK, Chung HY, Lu YL, Lin HY, Tai CL, & Lou J (2003) Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration. Gene Therapy 10(24):2013-2019.
Chang SC, Wei FC, Chuang H, Chen YR, Chen JK, Lee KC, Chen PK, Tai CL, & Lou J (2003) Ex vivo gene therapy in autologous critical-size craniofacial bone regeneration. Plastic and Reconstructive Surgery 112(7):1841-1850.
Fortier LA, Nixon AJ, & Lust G (2002) Phenotypic expression of equine articular chondrocytes grown in three-dimensional cultures supplemented with supraphysiologic concentrations of insulin-like growth factor-1. American journal of veterinary research 63(2):301-305.
Lo LJ, Lin WY, Wong HF, Lu KT, & Chen YR (2000) Quantitative measurement on three-dimensional computed tomography: an experimental validation using phantom objects. Chang Gung medical journal 23(6):354-359.
Wikesjo UM, Guglielmoni P, Promsudthi A, Cho KS, Trombelli L, Selvig KA, Jin L, & Wozney JM (1999) Periodontal repair in dogs: effect of rhBMP-2 concentration on regeneration of alveolar bone and periodontal attachment. Journal of Clinical Periodontology 26(6):392-400.
Lang H, Schuler N, Arnhold S, Nolden R, & Mertens T (1995) Formation of differentiated tissues in vivo by periodontal cell populations cultured in vitro. Journal of Dental Research 74(5):1219-1225.
Melcher AH, Cheong T, Cox J, Nemeth E, & Shiga A (1986) Synthesis of cementum-like tissue in vitro by cells culured by bone: A light and electone microscope study. Journal of Periodontal Research 21(6):592-612.
Tenorio D, Foyle DM, & Hughes FJ (1997) The modulatory role of cementum matrix on osteoblastic cells in vitro. Journal of Periodontal Research 32(4):362-374.
Tenorio D, Cruchley A, & Hughes FJ (1993) Immunocytochemical investigation of the rat cementoblast phenotype. J Periodonst Res 28(6 Pt 1):411-419.
McCulloch CA, Nemeth E, Lowenber B, & Melcher AH (1987) Paravascular cells in endosteal spaces of alveolar bone contribute to periodontal ligament cell populations. The Anatomical record 219(3):233-242.
King GN, King N, Cruchley AT, Wozney JM, & Hughes FJ (1997) Recombinant Human Bone Morphogenetic Protein-2 Promotes Wound Healing in Rat Periodontal Fenestration Defects. Journal of Dental Research 76(8):1460-1470.
Talwar R, Di Silvio L, Hughes FJ, & King GN (2001) Effects of carrier release kinetics on bone morphogenetic protein-2-induced periodontal regeneration in vivo. Journal of Clinical Periodontology 28(4):340-347.
Graves DT & Cochran DL (1994) Periodontal regeneration with polypeptide growth factors. Current Opinion in Periodontology:178-186.
Kinoshita A, Oda S, Takahashi K, Yokota S, & Ishikawa I (1997) Periodontal Regeneration by Application of Recombinant Human Bone Morphogenetic Protein-2 to Horizontal Circumferential Defects Created by Experimental Periodontitis in Beagle Dogs. Journal of Periodontology 68(2):103-109.
Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, & Kadiyala S (1998) Mesenchymal Stem Cells in Osteobiology and applied Bone regeneration. Clinical Orthopaedics and Related Research 355 Suppl:s247-s256.
Kawaguchi H, Hirachi A, Hasegawa N, Iwata T, Hamaguchi H, Shiba H, Takata T, Kato Y, & Kurihara H (2004) Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. Journal of Periodontology 75(9):1281-1287.
Chung VH, Chen AY, Kwan CC, Chen PK, & Chang SC (2011) Mandibular alveolar bony defect repair using bone morphogenetic protein 2-expressing autologous mesenchymal stem cells. The Journal of craniofacial surgery 22(2):450-454.
Wikesjo UM, Sigurdsson TJ, Lee MB, Tatakis DN, & Selvig KA (1995) Dynamics of wound healing in periodontal regenerative therapy. Journal of the California Dental Association 23(12):30-35.
Saim AB, Cao Y, Weng Y, Chang CN, Vacanti MA, Vacanti CA, & Eavey RD (2000) Engineering autogenous cartilage in the shape of a helix using an injectable hydrogel scaffold. Laryngoscope 110(10 Pt 1):1694-1697.
Cao YL, Rodriguez A, Vacanti M, Ibarra C, Arevalo C, & Vacanti CA (1998) Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. Journal of biomaterials science. Polymer edition 9(5):475-487.
Fowler EB (1997) The effects of pluronic polyols on regeneration of bone. Journal of Periodontology 68:401.
Fowler EB, Cuenin MF, Hokett SD, Peacock ME, McPherson JC, Dirksen TR, Sharawy M, & Billman MA (2002) Evaluation of pluronic polylols as carrier for grafting materials:study in rat calvaria defect. Journal of Periodontology 73(2):191-197.
Hokett SD, Cuenin MF, O'Neal RB, Brennan WA, Strong SL, Runner RR, McPherson JC, & Van Dyke TE (2000) Pluronic polyol effects on human gingival fibroblast attachment and growth. Journal of Periodontology 71(5):803-809.
Kabanov AV, Lemieux P, Vinogradov S, & Alakhov V (2002) Pluronic block copolymers: novel functional molecules for gene therapy. Advanced drug delivery reviews 54(2):223-233.
第一頁 上一頁 下一頁 最後一頁 top