跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 15:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝維傑
研究生(外文):Sie, Jie Wei
論文名稱:可撓式染料敏化太陽能電池之製程分析
論文名稱(外文):Fabrication Of Flexible Dye-sensitized Solar Cells
指導教授:李再成
指導教授(外文):Li, Zai Cheng
口試委員:吳煥文薛堯文張瑞慶李再成
口試委員(外文):Wu, Huan WenHsueh, Yao WengChang, Rwei ChingLi, Zai Cheng
口試日期:2012-06-28
學位類別:碩士
校院名稱:聖約翰科技大學
系所名稱:自動化及機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:99
中文關鍵詞:可撓式染料敏化太陽能電池機械加壓法
外文關鍵詞:FlexibleDSSCMechanical Pressure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:412
  • 評分評分:
  • 下載下載:140
  • 收藏至我的研究室書目清單書目收藏:0
  本研究主要是以ITO/PET、SUS 304、SUS 430來作為染料敏化太陽能電池之基材,並探討在不同製程下之轉換效率,以找出最適合染料敏化太陽能電池之可撓性基材。
  第一部分以ITO/PET基材製備上TiO2阻擋層,作為防止電子電洞對結合之現象;第二部分則運用機械加壓方式取代傳統高溫熱處理方式,促使TiO2顆粒間良好的連結性與光電轉換效率;第三部分採用熱解法來製備白金對電極,以不同膜厚參數來探討對轉換效率之影響;第四部分則以三種可撓性基材當作對電極,探討對於轉換效率輸出特性之影響。
  TiO2多孔層則採用三種機械加壓參數,探討對元件轉換效能之影響;運用熱解法製備Pt顆粒於不同可撓性基材上,在相同製程條件下,則以SUS 430基板作為對電極製作成DSSC之光電轉換效率亦較高,最佳的光電轉換效率為2.51%,而SUS 304為基板的DSSC則以1.75%為最佳值。
  此外,對於ITO/PET為基板的DSSC來說,因無法採用高溫熱解Pt溶液,進而採用低溫長時間方式取代則效果不佳。隨著TiO2阻擋層的加入,對於光生電流亦可得到提升,TiO2阻擋層則是以厚度20 nm時,擁有最佳的轉換效率。

  This research mainly ITO/PET、SUS 304、SUS 430 a flexible substrate, respectively explore under different processes, analysis of the effect on the conversion efficiency of nature.
  First part to ITO/PET base plate preparation Shang TiO2 blocked layer, as prevent electronic electric hole on combination of phenomenon; second part is using machinery pressurized way replaced traditional high temperature heat treatment way, led TiO2 particles between good of links sexual and photoelectric conversion efficiency; third part used hot solution to preparation Platinum on electrode, to different film thick parameter to discussion on conversion efficiency of effects analysis; IV part is to three species can flexible sexual base material as on electrode, discussion for conversion efficiency output characteristics of effects.
  TiO2 more hole layer is used three species machinery pressurized parameter, discussion on component of conversion effectiveness effects; using pyrolysis rule preparation Pt particles Yu different can flexible sexual base material Shang, used three species can flexible sexual base material, in same system thread conditions Xia, is to SUS 430 base plate as on electrode produced into DSSC of photoelectric conversion efficiency also higher, best of photoelectric conversion efficiency for 2.51%, and SUS 304 for base plate of DSSC is to 1.75% For the best value.
  Furthermore, for ITO/PET as a substrate for DSSC, due to lack of Pt solutions using high temperature pyrolysis and low temperature long time replaced the ineffective. With the accession of TiO2 blocking layers, photo-currents can also be promoted, TiO2 when the thickness of the barrier is to 20 nm, with the best conversion efficiency.

論 文 摘 要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 太陽能電池簡介 5
1.3.1 第一代太陽能電池 5
1.3.2 第二代太陽能電池 6
1.3.3 第三代太陽能電池 7
1.4 文獻回顧 9
1.4.1 染敏太陽能電池原理 9
1.4.2 可撓性電池製程與進展 10
1.4.3 TiO2阻擋層特性與研究 14
1.4.4 TiO2多孔層特性與研究 16
1.4.5 對電極特性與研究 21
1.4.6 可撓性基材 24
第二章 實驗方式與儀器設備 28
2.1 實驗材料 28
2.2 實驗流程 29
2.3 儀器與設備 30
2.3.1 射頻磁控濺射儀 30
2.3.2 高溫爐 31
2.3.3 表面輪廓儀 32
2.3.4 X光繞射儀 33
2.3.5 光譜儀 35
2.3.6 四點探針電阻儀 36
2.3.7 掃描式電子顯微鏡 37
2.3.8 能譜散佈分析儀 38
2.3.9 定電位/定電流儀 39
2.3.10 太陽光模擬器 41
2.4 田口方法 43
2.4.1 實驗設計法 43
2.4.2 直交表概觀 44
2.4.3 品質損失 45
2.4.4 品質計量S/N比 46
3.1 實驗流程 48
3.1.1 基材前處理 49
3.1.2 TiO2阻擋層薄膜製備 49
3.1.3 TiO2多孔層薄膜製備 50
3.1.4 TiO2多孔層機械加壓處理 50
3.1.5 配製染料敏化劑 51
3.1.6 對電極製備 52
3.1.7 田口實驗計畫法 53
3.1.8 電池組裝與量測 54
第四章 實驗結果與討論 56
4.1 TiO2阻擋層薄膜性質分析 56
4.1.1 TiO2阻擋層膜厚分析 56
4.1.2 TiO2阻擋層粗糙度分析 58
4.1.3 TiO2阻擋層光穿透率分析 60
4.1.4 TiO2阻擋層電性分析 61
4.2 TiO2多孔層薄膜性質分析 63
4.2.1 TiO2多孔層膜厚分析 63
4.2.2 TiO2多孔層晶體結構分析 64
4.2.3 TiO2多孔層微結構分析 66
4.3 製備Pt催化層於不同基材上之性質分析 69
4.3.1 Pt催化層於不同基材上之膜厚分析 69
4.3.2 Pt催化層於不同基材上之粗糙度分析 71
4.3.3 Pt催化層於不同基材上之成分分析 75
4.3.4 Pt催化層於不同基材上之反射率分析 76
4.3.5 Pt催化層於不同基材上之電性分析 77
4.4 I-V曲線轉換效率量測 79
4.4.1 機械加壓之轉換效率分析 79
4.4.2 田口實驗計畫之轉換效率分析 80
第五章 結論 89
參考文獻 91

[1]李名揚,「仿效葉綠素 捕捉太陽能」,《科學人雜誌》,120期,頁72,民101。
[2]B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, Vol. 353, 1991, pp. 737-740.
[3]M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, Valery Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells,” Journal of the American Chemical Society, Vol. 123, 2001, pp. 1613-1624.
[4]蔡進譯,「超高效率太陽能電池」,《物理雙月刊》,5期,頁701,民94。
[5]F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, M. Grätzel, “Enhance the Optical Absorptivity ofNanocrystalline TiO2 Film with High Molar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye-Sensitized Solar Cells,” Journal of the American Chemical Society, Vol. 130, 2008, pp. 10720-10728.
[6]A. J. Frank, N. Kopidakis, J. Lagemaat, “Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties,” Coordination Chemistry Reviews, Vol. 248, 2004, pp. 1165-1179.
[7]V. Thavasi, V. Renugopalakrishnan, R. Jose, S. Ramakrishna, “Controlled electron injection and transport at materials interfaces in dye-sensitized solar cells,” Materials Science and Engineering: R: Reports, Vol. 63, 2009, pp. 81-99.
[8]H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, J. Dae-Ryong, B. Park, “The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell,” Current Applied Physics, Vol. 85, 2012, pp. 737-741.
[9]H. Lindström, A. Holmberg, E. Magnusson, L. Malmqvist, A. Hagfeldt, “A new method to make dye-sensitized nanocrystalline solar cells at room temperature,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 145, 2001, pp. 107-112.
[10]G. Boschloo, H. Lindström, E. Magnusson, A. Hagfeldt, “Optimization of dye-sensitized solar cells prepared by compression method,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 148, 2002, pp. 11-15.
[11]N. Papageorgiou, W. F. Maier, M. Gratzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media,” Journal of the Electrochemical Society, Vol. 144, 1997, pp. 876-884.
[12]W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, “Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells,” Electrochemistry Communications, Vol. 10, 2008, pp. 1555-1558.
[13]M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang, K.-J. Kim, “Flexible MetallicSubstrates for TiO2 Film of Dye-sensitized Solar Cells,” Chemistry Letters, Vol. 34, 2005, pp. 804-805.
[14]J. H. Park, Y. Jun, H. G. Yun, S.-Y. Lee, M. G. Kang, “Fabrication of anEfficient Dye-Sensitized Solar Cell with Stainless Steel Substrate,” Journal of The Electrochemical Society, Vol. 155, 2008, pp. 145-149.
[15]I. O. Acik, A. Junolainen, V. Mikli, M. Danilson, M. Krunks, “Growth of ultra-thin TiO2 films by spray pyrolysis on different substrates,” Applied Surface Science, Vol. 256, 2009, pp. 1391-1394.
[16]黃建昇,「結晶矽太陽電池發展近況」,《工業材料雜誌》,203期,頁150,民92。
[17]楊智喬,「三五族太陽能電池製作與分析」,《成功大學光電科學與工程研究所碩士論文》,民96。
[18]劉智生、洪儒生,「太陽能電池的高效率化」,《科學發展》,439期,頁60-65,民98。
[19]林政緯,「使用磷擴散吸雜法改善多晶矽太陽能電池效率」,《中原大學電子工程研究所碩士論文》,民99。
[20]沈昌宏、謝嘉民,「可撓式矽薄膜太陽能電池」,《奈米通訊》,4期,頁12,民99。
[21]郭明村,「薄膜太陽電池發展近況」,《工業材料雜誌》,203期,頁138,民91。
[22]A. H. Mahan, J. Yang, S. Guha, D. L. Williamson, “Structural changes in a-Si:H film crystallinity with high H dilution ,” Applied Physics Letters, Vol. 74, 1999, pp. 1860.
[23]M. Gratzel, “Corrigendum to Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, 2004, pp. 3-14.
[24]U. O. Krasovec, M. Berginc, M. Hocevar, M. Topic, “Unique TiO2 paste for high efficiency dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, Vol. 93, 2009, pp. 379-381.
[25]M. A. Green1, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 39),” Progress in Photovoltaics: Research and Applications, Vol. 20, 2012, pp. 12-20.
[26]D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells,” Journal of Physical Chemistry B, Vol. 104, 2000, pp. 2053-2059.
[27]M. Bailes, P. J. Cameron, K. Lobato, and L. M. Peter, “Determination of the Density and Energetic Distribution of Electron Traps in Dye-Sensitized Nanocrystalline Solar Cells,” Journal of Physical Chemistry B, Vol. 109, 2005, pp. 15429-15435.
[28]D. Zhang, T. Yoshida, K. Furuta, H. Minoura, “Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, 2004, pp. 159-166.
[29]T. N. Murakami, Y. Kijitori, N. Kawashima, T. Miyasaka, “Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, 2004, pp. 187-191.
[30]S. Uchida, M. Tomiha, H. Takizawa, M. Kawaraya, “Flexible dye-sensitized solar cells by 28 GHz microwave irradiation,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, 2004, pp. 93-96.
[31]J. N. Harta, D. Menziesa, Y.-B. Chenga, G. P. Simona, L. Spiccia, “A comparison of microwave and conventional heat treatments of nanocrystalline TiO2,” Solar Energy Materials and Solar Cells, Vol. 91, 2007, pp. 6-16.
[32]李成玉,「熱液法低溫製備奈晶TiO2多孔薄膜電極」,《科學通報》,6期,頁527-530,民94。
[33]S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin, M. Gratzel, “High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode,” Chemical Communications, Vol. 38, 2006, pp. 4004-4006.
[34]L. N. Lewis, J. L. Spivack, S. Gasaway, E. D. Williams, J. Y. Gui, V. Manivannan, O. P. Siclovan, “A novel UV-mediated low-temperature sintering of TiO2 for dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, Vol. 90, 2006, pp. 1041-1051.
[35]B. D. Zhang, T. Yoshida, T. Oekermann, K. Furuta, H. Minoura, “Room-Temperature Synthesis of Porous Nanoparticulate TiO2 Films for Flexible Dye-Sensitized Solar Cells,” Advanced Functional Materials, Vol. 16, 2006, pp. 1228-1234.
[36]Y. Kijitori, M. Ikegami, T. Miyasaka, “Highly Efficient Plastic Dye-sensitized Photoelectrodes Prepared by Low-temperature Binder-free Coating of Mesoscopic Titania Pastes,” Chemistry Letters, Vol. 36, 2007, pp. 190-191.
[37]T. Yamaguchi, N. Tobe, D. Matsumoto, H. Arakawa, “Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes,” Chemical Communications, Vol. 45, 2007, pp. 4767-4769.
[38]T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, “Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%,” Solar Energy Materials and Solar Cells, Vol. 94, 2010, pp. 812-816.
[39]Q. Di-Feng, Z. Qing-Hong, W. Jun, L. Yao-Gang, W. Hong-Zhi, “Enhancing the Photovoltaic Performance of Dye Sensitized Solar Cells with the TiO2 Sol Infiltrated Nanocrystalline Electrode,” Acta Physico-Chimica Sinica, Vol. 26, 2010, pp. 2745-2751.
[40]S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, K. Mohammad, Nazeeruddin, M. Gratzel, “Control of dark current in photoelectrochemical (TiO2/I--I3-) anddye-sensitized solar cells,” Chemical Communications, Vol. 34, 2005, pp. 4351-4353.
[41]B. Yoo, K.-J. Kim, S.-Y. Bang, M. J. Ko, K. Kim, N.-G. Park, “Chemically deposited blocking layers on FTO substrates: Effect of precursor concentration on photovoltaic performance of dye-sensitized solar cells,” Journal of Electroanalytical Chemistry, Vol. 638, 2010, pp. 161-166.
[42]B. A. Walker, L. M. Peter, K. Lobato, P. J. Cameron, “Analysis of Photovoltage Decay Transients in Dye-Sensitized Solar Cells,” Journal of Physical Chemistry B, Vol. 110, 2006, pp.25504-25507.
[43]S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells,” Journal of Physical Chemistry B, Vol. 101, 1997, pp. 2576-2582.
[44]H. Yu, S. Zhang, H. Zhao, B. Xue, P. Liu, G. Will, “High-Performance TiO2 Photoanode with an Efficient Electron Transport Network for Dye-Sensitized Solar Cells,” Journal of Physical Chemistry C, Vol. 113, 2009, pp. 16277-16282.
[45]B. C. O'Regan, J. R. Durrant, P. M. Sommeling, N. J. Bakker, “Influence of the TiCl4 Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit,” Journal of Physical Chemistry C, Vol. 111, 2007, pp. 14001-14010.
[46]X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, D. Zhu, “Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films,” Journal of the American Chemical Society, Vol. 126, 2004, pp. 62-63.
[47]呂怡萱,「二氧化鈦奈米管於染料敏化太陽能池之探討」,《中央大學化學研究所碩士論文》,民95。
[48]N.-G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, A. J. Frank, “Dye-Sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4,” Journal of Physical Chemistry B, Vol. 103, 1999, pp. 3308-3314.
[49]H. Yua, S. Zhanga, H. Zhaoa, G. Willb, P. Liu, “An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells,” Electrochimica Acta, Vol. 54, 2009, pp. 1319-1324.
[50]J. Desilvestro, M. Graetzel, L. Kavan, J. Moser, J. Augustynski, “Highly efficient sensitization of titanium dioxide,” Journal of the American Chemical Society, Vol. 107, 1985, pp. 2988-2990.
[51]S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films, Vol. 516, 2008, pp. 4613-4619.
[52]N. Koide, Y. Chiba, A. Islam, R. Komiya. N. Fuke, “Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance,” Photovoltaic Specialists Conference, 2005, pp. 175-176.
[53]L. Han, N. Koide, Y. Chiba, A. Islam, T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance,” Comptes Rendus Chimie, Vol. 9, 2006, pp. 645-651.
[54]T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, M. Grätzel, “Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes,” Journal of The Electrochemical Society, Vol. 153, 2006, pp. 2255-2261.
[55]J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, S. Hao, “High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells,” Journal of Power Sources, Vol. 181, 2008, pp. 172-176.
[56]A. Hauch, A. Georg, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells,” Electrochimica Acta, Vol. 46, 2001, pp. 3457-3466.
[57]A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder,” Solar Energy Materials and Solar Cells, Vol 44,1996, pp. 99-117.
[58]K. Imotoa, K. Takahashib, T. Yamaguchib, T. Komurab, J. Nakamuraa, K. Murata, “High-performance carbon counter electrode for dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, Vol. 79, 2003, pp. 459-469.
[59]http://www.display-all.com/index.php?language_page=taiwan
[60]S.-S. Kim, J.-H. Yum, Y.-E. Sung, “Flexible dye-sensitized solar cells using ZnO coated TiO2 nanoparticles,” Journal of Photochemistry and Photobiology A: Chemistry, Vol.171, 2005, pp. 269-273.
[61]L. Yang, G. Xin, L. Q. Wu, T. L. Ma, “Flexible Dye-Sensitized Solar Cells,” Progress in chemistry, Vol. 21, 2009, pp. 2242-2249.
[62]D. U. Jin, J. K. Jeong, T. W. Kim, J. S. Lee,T. K. Ahn,Y. K. Mo,H. K. Chung, “Flexible AMOLED displays on stainless-steel foil,” Journal of the Society for Information Display, Vol. 14, 2006, pp. 1083-1090.
[63]W. Tana, X. Yina, X. Zhoua, J. Zhanga, X. Xiaoa, Y. Lin, “Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells,” Electrochimica Acta, Vol. 54, 2009, pp. 4467-4472.
[64]R. Steima, P. Schilinsky, S. A. Choulis, C. J. Brabec, “Flexible polymer photovoltaic modules with incorporated organic bypass diodes to address module shading effects,” Solar Energy Materials & Solar Cells, Vol. 93, 2009, pp. 1963-1967.
[65]A. Kay, “Solar cells based on dye-sensitized nanocrystalline TiO2 electrodes,” Phd. Thesis, Ecole Polytechnique Federale de Lausanne, Switzerland, 1994.
[66]T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, E. Abe, “Properties of several types of novel counter electrodes for dye-sensitized solar cells,” Journal of Electroanalytical Chemistry, Vol. 574, 2004, pp.77-83.
[67]M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang, K.-J. Kim, “Flexible Metallic Substrates for TiO2 Film of Dye-sensitized Solar Cells,” Chemistry Letters, Vol. 34, 2005, pp. 804-805.
[68]M. Toivola, J. Halme, K. Miettunen, K. Aitola, P. D. Lund, “Nanostructured dye solar cells on flexible substrates-Review,” International Journal of Energy Research, Vol. 33, 2009, pp. 1145- 1160.
[69]X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, E. Abe, “Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells,” Thin Solid Films, Vol. 472, 2005, pp. 242-245.
[70]K. Miettunen, X. Ruan, T. Saukkonen, J. Halme, M. Toivola, G. Huang, P. Lund, “Stability of Dye Solar Cells with Photoelectrode on Metal Substrates,” Journal of The Electrochemical Society, Vol. 157, 2010, pp. 814-819.
[71]http://www.eyesolarlux.com/Solar-simulation-energy.htm
[72]丁志華、戴寶通,「田口實驗計畫法簡介」,《毫微米通訊》,3期,頁7,民90。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top