跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/11 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊育綺
研究生(外文):Yang yu chi
論文名稱:可撓式二氧化鈦奈米柱陣列電極之製備
論文名稱(外文):Fabrication of TiO2 nanopillar - arrays on flexible substrates
指導教授:鄭錫恩
指導教授(外文):Cheng hsyi en
學位類別:碩士
校院名稱:南台科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:101
畢業學年度:100
語文別:中文
論文頁數:86
中文關鍵詞:陽極氧化鋁二氧化鈦原子層沉積法高分子材料可撓式
外文關鍵詞:Anodic aluminum oxideTiO2flexibleAtomic Layer Deposition
相關次數:
  • 被引用被引用:1
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用陽極氧化鋁(Anodic Aluminum oxide,AAO)模板之高深寬比之孔洞輔助原子層沉積法(Atomic Layer Deposition,ALD) 在300℃沉積溫度下,以TiCl4和H2O為反應前驅物,成長二氧化鈦(TiO2)奈米柱陣列。別於一般使用易碎又厚重的玻璃作為電極基材,本研究使用可撓曲、輕便且不易碎的高分子材料-PET作為基底,以紫外光固化樹脂(UV膠)作為接著劑與PET基板貼合,製作可撓式奈米柱陣列電極。
本研究以掃描式電子顯微鏡(FE-SEM)觀察AAO模板、TiO2奈米柱表面與截面型態,以X光繞射儀(XRD)分析其結晶結構以及使用光學吸收光譜儀量測高分子材料的穿透率。
研究結果顯示,以AAO模板輔助原子層沉積法可成功製備TiO2奈米柱,而奈米柱直徑與長度則由AAO模板所決定,孔洞大小與長短約100~200 nm以及1~7μm。以ALD法在300℃所成長的TiO2薄膜皆為銳鈦礦(Anatase)相。塑膠基板COC與PET穿透率分別為90%、80%,而UV膠成功地讓塑膠基板與奈米柱結構緊密結合製作出可撓式電極。亞甲基藍(Methylene Blue,MB)分解不會因基板不同而有所影響而是取決於TiO2結構,TiO2奈米柱結構可提升分解效率。
本實驗已完成可撓式奈米柱工作電極,依照本實驗製程方式持續製作、進行封裝,可望完成可撓式染化敏料太陽能電池。
In this study, titanium dioxide (TiO2) were grown on anodic aluminum oxide ( AAO ) templates by atomic layer deposition (ALD) at 300 °C with TiCl4 and H2O reactants. Because glass substrate is weight and breakable, we used polymer substrate which is flexible, lightweight and unbreakable. We used PET and COC substrate to replace glass substrate and used UV curable resin (UV adhesive) as adhesive between the TiO2 nanopillar film and polymer substrate .
The morphology of TiO2 nanopillar-arrays was characterized by using SEM and XRD; and the transmittance of polymer materials was measured by UV-Visible spectrometer. According to the morphologies of TiO2 nanopillar-arrays, the length and the diameter of nanopillar were around 1~7μm and 100~200 nm, respectively.
The crystal structure of TiO2 films and nanopillar grown at 300℃ was Anatase . Transmittance of COC and PET were 90% and 80% respectively, and the UV adhesive closely integrated the plastic substrate and TiO2 nanopillar film to form a flexible electrode. Methylene blue decomposition efficiency didn’t affected by the used plastic substrate, but it was improved by nanopillar structure. However, the improvement wasn’t significant.
This study have accomplished the flexible nanopillar electrodes. They can be used for the devices those need high aspect ratio surface area.
目 錄


中文摘要.........................................................................................................................i
英文摘要........................................................................................................................ii
目錄...............................................................................................................................iv
第一章 前言................................................................................................................1
第二章 理論及文獻回顧............................................................................................6
2-1 陽極氧化鋁簡介.....................................................................................6
2-2二氧化鈦的結構與性質........................................................................18
2-3 ALD基礎理論......................................................................................20
2-4 ALD TiO2文獻回顧.............................................................................23
2-5 氧化銦錫透明導電膜...........................................................................25
2-6 高分子材料...........................................................................27
第三章 實驗步驟......................................................................................................31
3-1 實驗流程…….......................................................................................31
3-2 基板準備...............................................................................................33
3-3 陽極氧化處理.............................................................................35
3-4 ALD TiO2沉積.............................................................................38
3-5 ITO濺鍍.............................................................................42
3-6 塑膠基板黏合.......................................................................................46
3-7 去除Al與AAO層................................................................................49
3-8 薄膜特性分析.......................................................................................50
3-9 光觸媒特性量測...................................................................................52
第四章 結果與討論..................................................................................................54
4-1 陽極氧化鋁模板製備...........................................................................54
4-2 ITO薄膜................................................................................................66
4-3 TiO2奈米柱陣列之型態.......................................................................67
4-4 塑膠基板黏合......................................................................................75
4-5 光觸媒特性..........................................................................................77

第五章 結論..............................................................................................................79
參考文獻......................................................................................................................81
參考文獻
[1] 李綱信,全球煤市場之分析,經濟研究第九期。
[2] 葉惠青,經濟部2010年能源產業技術白皮書“,經濟部能源局,2010。
[3]經濟部工業局出版,“奈米科學展技術導論”, (2002) p21.
[4]高濂,鄭珊,張青紅,“奈米光觸媒”,五南圖書出版公司, (2004) p19~21.
[5] A. Fujishima, K. Honda,”Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature 238 (1972) P.37-38
[6]D. Dobrev, J. Vetter, N. Angert, and R. Neumann, “Growth of ion single crystal in the etched ion tracks of polymer foils,” Appl. Phys. A 72 (2001) 729.
[7] D. Almawlawi, K. A. Bosnick, A. Osika, and M. Moskovits, “Fabrication of nanometer-scale patterns by ion-milling with porous anodic alumina masks,”Adv. Mater. 12 (2000) 1252.
[8] P. M. Paulus, F. Luis, M. Kroll, G. Schmid, L. J. de Jongh, “Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires,” J. Magn. Mater. 224 (2001) 180.
[9] Y. Yang, H. L. Chen, Y. F. Mei, J. B. Chen, X. L. Wu, and X. M. Bao, “US nanocrystallites prepared by chemical and physical templates,” Acta Materia. 50(2002) 5085.
[10] S.L. Kuai, V.V. Truong, A. Hache, and X.F. Hu, “A comparative study of inverted-opal titania photonic crystals made from polymer and silica colloidal crystal templates,” J. Appl. Phy. 96 (2004) 5982.
[11] A.E. Saunders, P.S. Shah, M.B. Sigman, T. Hanrath, H.S. Hwang, K.T. Lim, K.P. Johnston, and B.A. Korgel, “Inverse opal nanocrystal superlattice films,” Nano Lett. 4 (2004) 1943.
[12] N. Hall, G. Ozin, “The photonic opal - the jewel in the crown of opticalinformation processing,” Chem. Commu. (2003) 2639.
[13] X. Y. Yuan, G. S. Wu, T. Xie, Y. Lin, G. W. Meng, and L. D. Zhang, “Autocatalytic redox fabrication and magnetic studies of Co-Ni-P alloy nanowire arrays”, Solid State Commun. 130 (2004) : P429-P432.
[14] 李祈興,“奈米孔洞陽極氧化鋁(AAO)基板製作之研究”,義守大學電子工程系, 八十三週年校慶基礎學術研討會,(2007) P28.
[15] 鄭才裕,“自我組織奈米級氧化鋁模板陽極氧化機制之研究”,暨南國際大學,電機工程系碩士論文(2004) P3~P4.
[16] G. D. Sulka,“Effect of Tensile Stress on Growth of Self-Organized Nanostructure on Anodized Aluminum”, Journal of The Electrochemical Society 151 (2004): P260~P264.
[17] O. Jessensky ,“Self-organized formation of hexagonal pore arrays in anodic alumina”,Applied Physics Letters Vol.72 No.10 (1998) P1173.
[18] V. P. Parkhutik ,V. I. Shershulsky, J. Phys. D: Appl. Phys. 25 (1992) P1258.
[19] Hideki Masuda ,“Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structure of Anodic Alumina.”,Science, New Series. 268. No. 5216: (1995) P1466-P1468.
[20A. P. Li ,“ Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina”, Journal of Applied Physics 84. No.11: (1998)P6023~P6026.
[21]楊昆霖,“大面積規則陽極氧化鋁孔洞之研製與相關應用”,國立中山大學光電工程研究所碩士論文(2007) P4.
[22]謝明倫,“薄膜式規則性多孔陽極氧化鋁膜製作”,國立中央大學光電科學研究所碩士論文 (2006) P5~P8
[23]K. M. Reddy ; S. V. Manorama ; A. R. Reddy ; “Bandgap Studies on Anatase Titanium Dioxide Nanoparticles,” Materials Chemistry and Physics 78 (2002) P.239–245.
[24]F. Y. Li, L. Zhang, R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,” Chem. Mater. 10 (1998) 2470.
[25]. P. O’Sullivan and G. C. Wood, “The morphology and mechanism offormation of porous anodic films on aluminium,” Proc. R. Soc. (London) A 317(1970) 511
[26]A. J. Brock and G. C. Wood, “Studies on the structure of anodic oxide films on aluminim,”Electrochim. Acta 12 (1967) 395.
[27]D. A. Vermilyea, “Stresses in anodic films,” J. Electrochem. Soc. 110 (1963) 345.
[28]. T. Roger, P. H. G. Draper, S. S. Wood, “Information on anodic oxide on valve metals : oxide growth at constant rate of voltage increase,” Electrochim. Acta 13(1968) 251.
[29]A. F. Well, Structural inorganic chemistry, 2nd ed, Oxford : Clarendon Press(1952) 37.
[30]. A. Treverton, and N .C. Davies, “XPS studies of dc and ac anodic films on aluminum formed in surphuric acid,” Electrochim. Acta 25 (1980) 1571.
[31]S. Tajima, “Luminescence, breakdown and colouring of anodic oxide film on aluminum,” Electrochim. Acta 22 (1977) 995.
[32] K. Shimizu, G. E. Thompson, and G. C. Wood, “Preparation of regularly structured porous metal membranes with two different hole diameters at the two sides” Electrochim. Acta 27 (1982) 245.
[33] K. Shimizu, G. E. Thompson, and G. C. Wood, “Cellular growth of highly ordered porous anodic films on aluminum” , Thin Solid Films 92 (1982) 231..
[34] 吳明道,“陽極氧化之奈米多孔氧化鋁的研究”,國立成功大學材料科學與工程學系研究所博士論文 (2005) P18
[35] G. E. Thompson, and G. C Wood, “Porous anodic film formation on aluminum,” Nature 290 (1981) 230.
[36]增田達也,“アルミニウムのアノード酸化による孔径制御したa-アルミナメンブレンの作製とその特性”,日本工學院大學應用化學研究所修士論文 (2012)
[37]S.Ono, M.Saito, H. Asoh ;Electrochimica Acta 51 (2005) 827–833.
[38] Shoso Shingubara, Osamn Okino ,Yasuyuki Sayama, Hiroyuki Sakaue and Takayuki “Ordered Two Dimensional Nanowire Array Formation Using Self-Organized of Anodically Oxidized Aluminum” Jpn,J,Appl.Phys.Vol.36,7791(1997)
[39] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice for nanoscale photonics and electronics”, Nature (2002) P617-620.
[40] K. M. Reddy ; S. V. Manorama ; A. R. Reddy ; “Bandgap Studies on Anatase Titanium Dioxide Nanoparticles,” Materials Chemistry and Physics 78 (2002) P.239–245.
[41] K. Nagaveni ; M. S. Hegde ; N. Ravishankar ; G. N. Subbanna ; G. Madras “Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity,” Langmuir, 20 (2004) P. 2900-2907.
[42] A. E. Braun, “ALD breaks materials, conformality barriers”, Semiconductor International, 24 (2001) P. 52.
[43] T. Suntola, Atomic layer epitaxy, in Handbook of Crystal Growth, Ed. D. T. J. Hurle,Thin Films and Epitaxy, Part B: Growth Mechanisms and Dynamics, Elsevier, Amsterdam Vol. 3 (1994) P.14.
[44] J. Aarik, A. Aidla, T. Uustare, M. Ritala, M. Leskela, “Titanium isopropoxide as a precursor for atomic layer deposition: Characterization of titanium dioxide growth process”, Applied Surface Science, 161 (2000) P.385-395.
[45] J. Aarik, A. Aidla, H. Mandar, T. Uustare, M. Schuisky, A. Harsta, “Atomic layer growth of epitaxial TiO2 thin .lms from TiCl4 and H2O on a-Al2O3 substrates”, Journal of Crystal Growth 242 (2002) P.189-198.
[46] D.R.G. Mitchell, D.J. Attard, G. Triani, “Transmission electron microscopy studies of atomic layer deposition TiO2 films grown on silicon“, Thin Solid Films, 441(2003) P.85-95.
[47]陳家全, 基材對原子層沉積二氧化鈦薄膜性質之影響,南台科技大學奈米科技研究所碩士論文(2008)P5.
[48]洪文進 許登貴 萬明安 郭書瑋 蘇昭瑾,ITO 透明導電薄膜:從發展與應用到製備與分析,台北科技大學有機高分子研究所, CHEMISTRY(THE CHINESE CHEM. SOC., TAIPEI)September. 2005 Vol. 63, No.3, pp.409~418
[49]. Wyckoff and Ralph W.G., “Crystal Structure”, Vol. 2, Chap. Ⅴ,Illus., p.2, 1960.
[50]. A.J. Steckl and G. Mohammed, “The Effect of Ambient Atmosphere in the Annealing of Indium Tin Oxides Films”, J. Appl. Phys., 51(7)(1980) p.3890~3895.
[51] 陳思成,“沈積ITO透明導電膜於可撓式基板上之性質研究”,國立成功大學材料科學與工程學系研究所博士論文 (2003) P18.
[52] 蔡明倫,“ITO 鍍膜於PET 基板上之研究”, 國立中央大學光電科學研究所碩士論文,中華民國九十五年六月
[53] 曾明俊,“透明導電膜沉積條件對可撓式有機發光二極體光電特性之影響”, 國立虎尾科技大學光電與材料科技研究所碩士論文,中華民國九十四年六月
[54]J. H. Yuan, F. Y. He, D. C. Sun, and X. H. Xia, “A Simple Method for Preparation of Through-Hole Porous Anodic Alumina Membrane”, Chem. Mater., 16, 1841-1844. 2004.
[55] Chang-Woo Lee, Chang-Il Lee, Won Shim, Yoon-Ho Chang* and Yeong-Min Hahm, “ Characteristics of Gas Permeation using Two-layered Alumina Membrane Prepared by Anodic Oxidation”, Korean J. Chem. Eng., 18(1), 101-105 (2001)
[56] Sachiko Ono, Hideki Ichinose, and Noboru Masuko , ’’Defects in Porous Anodic Films Formed on High Purity Aluminum’’, J. Electrochem. Soc., Vol. 138, No. 12, 1991
[57] Sachiko ONO, ’’Dielectric Breakdown Behavior and Oxide Film Structure Associated with Anodizing of Valve Metals’’ ,表面技術,P342,2008
[58] 小野幸子学位論文(東京大学, 1993年).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top