跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 23:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁書華
研究生(外文):Shu-Hua Liang
論文名稱:無鉛壓電陶瓷材料Li0.035(KxNa1-x)0.965(Nb0.9Ta0.1)O3 (X=0.4~0.6) 之研究
論文名稱(外文):Study of Li0.035(KxNa1-x)0.965(Nb0.9Ta0.1)O3 (X=0.4~0.6) Lead-Free Piezoelectric Ceramics
指導教授:鄭建民鄭建民引用關係
指導教授(外文):Chien-Min Cheng
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:101
畢業學年度:100
語文別:中文
論文頁數:69
中文關鍵詞:無鉛、壓電、陶瓷、傳統固態反應法、KNN、PZT。繞射法分析儀顯微鏡代表性鈣鈦礦
外文關鍵詞:lead-freesputteringferroelectricleakage currentKNNPZT.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文所探討的是無鉛壓電陶瓷材料,其中最具代表性的則是鋯鈦酸鉛(PZT)壓電陶瓷材料,具有高Kp與d33以及其他較佳的壓電常數,但材料其中含有鉛,研究指出鉛對環境會造成汙染以及對人體有害,因此現在的趨勢是尋找無鉛壓電陶瓷材料來取代PZT壓電陶瓷的含鉛系列。無鉛壓電陶瓷材料亦分為鈦酸鋇(BaTiO3)、鈮鉀鈉(KNN)等系列,其中KNN有較高的居里溫度,因此本論文用KNN系列來做為研究題目,組成則為Li(K,Na)(Nb,Ta)O3,利用傳統固態反應法來製備無鉛壓電陶瓷及其特性之研究。再將製備好的陶瓷塗上電極極化(4 KV/mm),在物性分析方面,利用掃描式電子顯微鏡(SEM)來觀察表面結構和X-射線繞射法(XRD)來分析其晶相。而電性分析方面,則用阻抗分析儀(HP4294)來量測相對介電常數(εr),以及有效機電耦合常數(Kp),而d33 METER(YE2730A)則用來量測壓電電荷常數(d33)。由實驗結果得知燒結溫度,均有主結構鈣鈦礦(ABO3)。最後,本研究得到物性SEM、XRD,以及電性為: εr、Kp、d33,而組成參數對KNNLT無鉛壓電陶瓷特性的影響也將在本文中詳細探討。
The lead-free Li0.035(KXNa1-X)0.965(Nb0.9Ta0.1)O3 (x=0.4~0.6) piezoelectric ceramics were prepared by MO method. The influence of K and Na content of KNNLT ceramics is systematically studied. It is found that the ceramics with x=0.4 and x=0.6 have an orthorhombic structure, whereas the ceramics exhibits a tetragonal structure. The ceramics with shows the coexistence of the orthorhombic and tetragonal phase and high piezoelectric properties. K and Na have the effect of enhancing the ceramic sinter-ability, density, and piezoelectric properties. The best composition is obtained, the optimum characteristics. The lead-free piezoelectric ceramics were prepared by BO method. Because the B-site oxides were reacted in advance, it has the high activeness and the diffusibility, the broad sintering temperature in the solid-state reaction processing. Therefore, the ceramic compactness is good, and has the identical kind of composition as compared to the MO method. The piezoelectric characteristics are promoted, presenting the optimum characteristics kp(%), d33. The BO-method preparation also has the potential in the stable temperature characteristic, and the low aged speed than those preparing by MO method.
目次
摘要 I
ABSTRACT II
致謝 III
目次 IV
圖目次 VIII
表目次 X
第一章 前言 1
1.1 緒論 1
1.2 研究動機 2
1.3 無鉛壓電陶瓷 3
1.4 BATIO3 4
1.5 (KNA)NBO3 4
1.6 含鉛壓電陶瓷PZT 6
1.7 論文架構 7
第二章 理論 9
2.1 精密陶瓷 9
2.2鍵結 9
2.3 介電材料與壓電材料 9
2.4 同質異相和轉換 10
2.5 轉換 11
2.6 重組轉換 11
2.7 壓電效應 11
2.8 極化機制 12
2.9 居里溫度 14
2.10 陽離子對導電性之影響 14
2.11 晶體對稱性 15
第三章 製程與量測 16
3.1 實驗步驟 16
3.2 球磨 17
3.3 黏結劑 18
3.4 篩分 19
3.5 篩網 19
3.6 成形壓力 20
3.7 煆燒 22
3.8 燒結 22
3.9 掃描電子顯微鏡 24
第四章 結果與討論 26
4.1 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6) XRD圖(煆燒:910℃,持溫:4小時) 26
4.2 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6) XRD圖(燒結:1130℃,持溫:2小時) 27
4.3 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6) SEM圖(燒結:1130℃,持溫:2小時) 28
4.4 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6)介電常數與介電損失圖(燒結:1130℃,持溫:2小時,頻率:1KHZ) 29
4.5 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4)溫度對介電常數與介電損失影響圖(燒結:1130℃,持溫:2小時,頻率:1KHZ~1MHZ) 30
4.6 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.45)溫度對介電常數與介電損失影響圖(燒結:1130℃,持溫:2小時,頻率:1KHZ~1MHZ) 31
4.7 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.5)溫度對介電常數與介電損失影響圖(燒結:1130℃,持溫:2小時,頻率:1KHZ~1MHZ) 32
4.8 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.55)溫度對介電常數與介電損失影響圖(燒結:1130℃,持溫:2小時,頻率:1KHZ~1MHZ) 33
4.9 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.6)溫度對介電常數與介電損失影響圖(燒結:1130℃,持溫:2小時,頻率:1KHZ~1MHZ) 34
4.10 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6) TO-T相變點(燒結:1130℃,持溫:2小時)(1KHZ~1MHZ) 35
4.11 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6) TC相變點(燒結:1130℃,持溫:2小時)(1KHZ~1MHZ) 36
4.12 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6)溫度對介電常數與介電損失影響圖(燒結:1130℃,持溫:2小時,頻率:1KHZ) 37
4.13 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6)溫度對介電常數與介電損失影響圖(燒結:1130℃,持溫:2小時,頻率:10KHZ) 38
4.14 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6)溫度對介電常數與介電損失影響圖(燒結:1130℃,持溫:2小時,頻率:100KHZ) 39
4.15 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6)溫度對介電常數與介電損失影響圖(燒結:1130℃,持溫:2小時,頻率:1MHZ) 40
4.16頻率:1KHZ~1MHZ,TO-T晶相轉換溫度點LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3(X=0.4~0.6) 41
4.17 頻率:1KHZ~1MHZ,TC晶相轉換溫度點LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3(X=0.4~0.6) 42
4.18 壓電電荷常數與機械耦合常數圖(溫度:常溫) LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3(X=0.4~0.6) 43
第五章 結論 44
參考文獻 45


圖目次
圖1-1 陶瓷材料特性 3
圖1-2 鈣鈦礦結構圖 4
圖1-3 壓電陶瓷之應用圖 8
圖2-1 試片進行直流電壓極化內部圖 10
圖2-2 正、逆壓電效應 12
圖2-3 四種不同的極化機制 14
圖3-1 實驗與量測步驟 17
圖3.2 研磨時間對粉粒徑分佈之關係 18
圖3-3 在球磨機中球體運動示意圖 18
圖3-4 壓胚密度與成形壓力的關係 21
圖3-5 粉末成型各階段示意圖 21
圖3-6 典型粉末燒結過程分類示意圖 24
圖4-1 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6)煆燒910℃之XRD 26
圖4-2 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6)燒結1130℃之XRD 27
圖4-3 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6)燒結1130℃之SEM 28
圖4-4 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4)介電常數與介電損失於室溫、頻率1 KHZ之量測 29
圖4-5 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4)溫度對介電常數與介電損失影響圖(1KHZ~1MHZ) 30
圖4-6 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.45)溫度對介電常數與介電損失影響圖(1KHZ~1MHZ) 31
圖4-7 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.5) 溫度對介電常數與介電損失影響圖(1KHZ~1MHZ) 32
圖4-8 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.55)溫度對介電常數與介電損失影響圖(1KHZ~1MHZ) 33
圖4-9 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.6)溫度對介電常數與介電損失影響圖(1KHZ~1MHZ) 34
圖4-10 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6)之低溫轉換點TO-T 35
圖4-11 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6)之高溫轉換點TC 36
圖4-12 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6)溫度對介電常數與介電損失影響圖(1KHZ) 37
圖4-13 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6)溫度對介電常數與介電損失影響圖(10KHZ) 38
圖4-14 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6)溫度對介電常數與介電損失影響圖(100KHZ) 39
圖4-15 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6)溫度對介電常數與介電損失影響圖(1MHZ) 40
圖4-16 頻率1KHZ~1MHZ之TO-T相變點圖LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6) 41
圖4-17頻率1KHZ~1MHZ之TC相變點圖LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6) 42
圖4-18 LI0.035(KXNA1-X)0.965(NB0.9TA0.1)O3 (X=0.4~0.6)壓電電荷常數與機械耦合常數 43

表目次
表2-1 電子精密陶瓷機能性分類 9
表2-2 壓電陶瓷的各種應用[3] 12
表2-3缺陷:點缺陷、線缺陷、面缺陷、體缺陷與電子缺陷 13
表2-4 不同陽離子擴散時之活化能 15
表3-1 篩網目數與孔徑對照表 20
表3-2 成型壓力和密度的關係 20
表3-3 粉末生產方式 24
[1] Kittel(編), 洪連輝(譯), 劉立基(譯), 魏榮君(譯), “固態物理導論”, 高立圖書有限公司, 9-22, 98.
[2] 王永齡, “功能陶瓷性能與應用”, 科學出版社, 1-79, 2003.
[3] 池田拓郎(編), 陳世春(譯), “基本壓電材料學”, 復漢出版社, 24-26, 86.
[4] 吳朗, “電子陶瓷(入門)”, 全欣資訊圖書, 6-132, 81.
[5] 國立編譯館, 邱碧芳, “電子陶瓷材料”, 財團法人徐氏基金會, 1-465, 86.
[6] 程道腴, 鄭武輝, “工業陶瓷”, 徐氏基金會, 16-71, 74.
[7] 黃坤祥, 馮慶芬, “粉末冶金學”, 新文京開發出版有限公司, 129-536, 91.
[8] 葉思武, ”新陶瓷學”, 復文書局, 66-78, 81.
[9] 劉國雄, 鄭晃忠, 李勝隆, 林樹均, 葉均蔚, “工程材料科學(新版)”, 全華科技圖書股份有限公司, 85-766, 2006.
[10] 謝煜宏, “電子材料”, 新文京開發出版有限公司, 68-210, 92.
[11] 吳朗, 電子陶瓷(壓電), 全欣科技, 台北, 1904.
[12] B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, New York, Academic Press Limited, 1971.
[13] L. Egerton, and D. M. Dillon, Piezoelectric and Dielectric Properties of Ceramics in System Potassium –Sodium Niobate, J. Am. Ceram. Soc., 42, 438-442, 1959.
[14] K. Uchino, Ferroelectric Device, Marcel Dekker, Inc. New York, 2000.
[15] A. J. Moulson and J. M. Herbert, Electroceramics, 2nd Ed., John Wiley and Sons, Inc., New York, 1996.
[16] M. Takahashi, N. Tsubouchi, M. Ypnezawa, T. Ohno, and T. Akashi, Piezoelectric properties of ternary ceramic compounds consisting either of Pb(Mn1/3Nb2/3)O3 or Pb(Mn1/2Nb1/2)O3 with PbTiO3-PbZrO3, J. J. Soc. Powder and Powder Metallurgy., 20, 274-284, 1974.
[17] V. Koval, C. Alemany, J. Briancin, H. Brunckova, and K. Soksl, Effect of PMN modification on structure and electrical response of xPMN-(1-x)PZT ceramic system, J. Eur. Ceram. Soc., 23, 1157-1166, 2003.
[18] Z. G. Zhul, G. R. Li, W. Z. Zhang, and Q. R. Yinl, Microstructure and piezoelectric properties of PMS-PT ceramics, Mater. Sci. Eng. B., 38, 216-220, 2005.
[19] F. Gao , L. H. Cheng, R. Z. Hong, J. Liu, C. J. Wang, and C. Tian, Crystal structure and piezoelectric properties of xPb(Mn1/3Nb2/3)O3–(0.2 − x)Pb(Zn1/3Nb2/3)O3–0.8Pb(Zr0.52Ti0.48)O3 ceramics, ceramic int., 35, 1719-1723, 2009.
[20] Z. Yang, X. Chao, R. Zhang, Y. Chang, and Y. Chen, Fabrication and electrical characteristics of piezoelectric PMN–PZN–PZT ceramic transformers, Mater. Sci. Eng. B., 138 , 277-283, 2007.
[21] Z. Yang, X. Zong, H. Li, and Y. Chang, Structure and electrical properties of new Pb(Zr,Ti)O3–Pb(Fe2 / 3W1 / 3)O3–Pb(Mn1 / 3Nb2 / 3)O3 ceramics, Mater. Lett., 59, 3476-3480, 2005.
[22] J. F. Tressler, S. Alkoy, and R. E. Newnham, Piezoelectric sensors and sensor materials, J. Elec., 2, 257-272, 1998.
[23] S. M. Choi, C. J. Stringer, T. R. Shrout, and C. A. Randall, Structure and property investigation of a B-base perovskite solid solution: (1-x)Bi(Ni1/2Ti1/2)O3-xPbTiO3, J. Appl. Phys., 98, 034108, 2005.
[24] C. A. Randall, R. Eitel, T. R. Shrout, D. I. Woodward, and I. M. Reaney, Investigation of a high Tc piezoelectric system: (1-x)Bi(Mg1/2Ti1/2)O3- xPbTiO3, J. Appl. Phys., 98, 3633-39, 2004.
[25] G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, New ferroelectrics of complex composition, Sov. Phys. Solid state,. 2, 2651-2654, 1961.
[26] H. Takahashi, Y. Numamoto, J. Tani and S. Tsurekawa, Piezoelectric Properties of BaTiO3 Ceramics with High Performance Fabricated by Microwave Sintering, Jpn. J. Appl. Phys., 45, 7405-7408, 2006.
[27] T. Karaki, K. Yan, T. Miyamoto, and M. Adachi, Lead-Free Piezoelectric Ceramics with Large Dielectric and Piezoelectric Constants Manufactured from BaTiO3 Nano-Powder, Jpn. J. Appl. Phys., 46, L97-L98, 2006.
[28] T. Takenaka, H. Nagata, Y. Hiruma, Current Developments and Prospective of Lead-Free Piezoelectric Ceramics, Jpn. J. Appl. Phys., 47, 3787-3801, 2008.
[29] T. Takenaka and H. Nagata, Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3 -1/2(Bi2O3‧Sc2O3) system, J. Eur. Ceram. Soc., 25, 2693-2700, 2005.
[30] A. Sanson, and R. W. Whatmore, Properties of Bi4Ti3O12–(Na1/2Bi1/2)TiO3 Piezoelectric Ceramics, Jpn. J. Appl. Phys., 41, 7127–7130, 2002.
[31] X. Wang, Hellen, L. W. Chan, and C. L. Choy, Piezoelectric and dielectric properties of CeO2-added (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics, Sol. Stat. Comm., 125, 395-399. 2003.
[32] Y. Li, W. Chen, Q. Xu, J. Zhou, and X. Gu, Piezoelectric and ferroelectric properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3 piezoelectric ceramics Mater. Lett., 59, 1361-1364, 2005.
[33] B. J. Chu, D. R. Chen, G. R. Li, Q. R. Yin, Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics, J. Eur. Ceram. Soc., 22, 2115-2121, 2002.
[34] Y. Hiruma, K. Yoshii, R. Aoyagi, H. Nagata, and T. Takenaka, Piezoelectric Properties and Depolarization Temperatures of (Bi1/2Na1/2)TiO3- (Bi1/2K1/2)TiO3- BaTiO3 Lead-Free Piezoelectric Ceramics, Key Engineering Materials., 320, 23-26, 2006.
[35] A. Yoshio, and S. Mikiya, Piezoelectric ceramic material and its production, Jp-11-180769, 1999- 07-06.
[36] B. J. Chu, D. R. Chen, G. R. Li, and Q. R. Yin, Electric properties of (Bi1/2Na1/2)TiO3-BaTiO3 ceramics, J. Euro. Ceram. Soc., 22, 2115-2121, 2002.
[37] Y. R. Zhang, J. F. Li, and B. P. Zhang, Enhancing Electrical Properties in NBT–KBT Lead-Free Piezoelectric Ceramics by Optimizing Sintering Temperature, J. Am. Ceram. Soc., 91, 2716-19, 2008.
[38] T. Takenaka, K. Sakata, and K. Toda, Piezoelectric Properties of (Bi1/2Na1/2TiO3) - Based ceramics, Ferroelectrics, 106 , 375–380, 1990.
[39] H. D. Megaw, Seven phase of sodium niobate, Ferroelectric, 7, 87-89, 1974.
[40] B. Jaffe, R. S. R., and S. Marzullo, Properties of piezoelectric ceramic in the solid-solution series lead titanate-zirconate oxide:tin oxide and lead titanate lead hafnate, J. Res. Natl. Bur. Stand., 55, 239-245, 1955.
[41] H. Ishii, H. Nagata, and T. Takenaka, Morphotropic Phase Boundary and Electrical Properties of Bisumuth Sodium Titanate–Potassium Niobate Solid-Solution Ceramics, Jpn. J. Appl. Phys., 40, 5660-5663, 2001.
[42] Shirane, Ferroelectric crystals, Pramon, New York, 1962.
[43] M. Kosec, and D. Kolar, On activated sintering and electrical properties of NaKNbO3, Mat. Res. Bull., 10, 335-339, 1975.
[44] G. Shiran, R. neweham, and R. Pepinsky, Dielectric properties and phase transition of NaNbO3 and (Na, K)NbO3, Phys. Rev., 96 (1954) 581-588.
[45] R. E. Jaeger, and L. Egerton, Hot Pressing of Potassium-Sodium Niobates, J. Am. Ceram. Soc., 45, 209-216, 1962.
[46] R. Wang, R. Xiel, T. Sekiy, and Y. Shimojo, Facrbation and characterization of Potassium-Sodium Niobates piezoelectric ceramics by spark-plasma-sintering method, Mat. Res. Bull., 10, 335-340, 2004.
[47] H. Du, D. Liu, F. Tang, D. Zhu, and W. Zhou, Microstructure, Piezoelectric, and Ferroelectric Properties of Bi2O3-Added (K0.5Na0.5)NbO3 Lead-Free Ceramics, J. Am. Ceram. Soc., 90, 2824–2829, 2007.
[48] R. Wang, R. Xie, T. Sekiya, and Y. Shimojo, Fabrication and characterization of potassium–sodium niobate piezoelectric ceramics by spark-plasma-sintering method, Mat. Res. Bull., 39, 1709-1715, 2004.
[49] G. H. HAERTLIN, Properties of Hot-Pressed Ferroelectric Alkali Niobate Ceramics, J. Am. Ceram. Soc., 50, 329-330, 1967.
[50] D. Lin, K. W. Kwok, and H. L. W. Chan, Piezoelectric and ferroelectric properties of Cu-doped K0.5Na0.5NbO3 lead-free ceramics, J. Phys. D:Appl. Phys., 41, 045401, 2008.
[51] D. Lin, K. W. Kwok, and H. L. W. Chan, Piezoelectric properties and hardening behavior of K5.4Cu1.3Ta10O29-doped K0.5Na0.5NbO3 ceramics, J. Appl. Phys., 103, 064105, 2008.
[52] Q. Chen, L. Chen, Q. Li, Xi Yue, and J. Zhu, Piezoelectric properties of K4CuNb8O23 modified (Na0.5K0.5)NbO3 lead-free piezoceramics, Appl. Phys. Lett., 102, 104109, 2007.
[53] J. Zeng, Y. Zhang, L. Zheng, G. Li and Q. Yin, Enhanced Ferroelectric Properties of Potassium Sodium Niobate Ceramics Modified by Small Amount of K3Li2Nb5O15, J. Am. Ceram. Soc., 92, 752-754, 2009.
[54] H. Y. Park, J. Y. Choi, M. K. Choi, K. H. Cho, and S. Nahm, Effect of Cuo on the sintering temperature ceramics, J. Am. Ceram. Soc., 91,2374-2377, 2008.
[55] M. S. Kim, S. J. Jeong and J. S. Song, Microstructures and Piezoelectric Properties in the Li2O-Excess 0.95(Na0.5K0.5)NbO3–0.05LiTaO3 Ceramics, J. Am. Ceram. Soc., 90, 2338-2340, 2007.
[56] F. R. Marcos, P. Ochoa, J. F. Fernandez, Sintering and properties of lead-free. (K,Na,Li)(Nb,Ta,Sb)O3 ceramics, J. Euro. Ceram. Soc., 27, 4125-4129, 2007.
[57] Y. F. Chang, Z. P. Yang, Y. T. Hou, Z. H. Liu, and Z. L. Wang, “Effects of Li content on the phase structure and electrical properties of lead-free „K0.46−x/2Na0.54−x/2Lix…„Nb0.76Ta0.20Sb0.04…O3 ceramic”, Appl. Phys. Lett., 90, 232905, 2007.
[58] Y. Dai, X. Zhang, and G. Zhou, Phase transitional behavior in K0.5Na0.5NbO3 – LiTaO3 ceramics, J. App.l Phys., 102,034102, 2007
[59] P. Zhao and B. P. Zhang, Enhancing piezoelectric d33 coefficient in Li/Ta-codoped lead-free „Na,K…NbO3 ceramics by compensating Na and K at a fixed ratio, Appl. Phys. Lett., 91, 172901, 2007.
[60] M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, and S. Hirano, Processing and Piezoelectric Properties of Lead-Free (K,Na) (Nb,Ta) O3 Ceramics, J. Am. Ceram. Soc., 88, 1190-1196, 2005.
[61] Y. Saito, and H. Takao, High performance lead-free piezoelectric ceramics in the (K,Na)NbO 3-LiTaO3 solid solution system, Ferroelectrics, 338, 17-32, 2006.
[62] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Lead-free piezoceramics, Nature, 432 (7013), 84-87, 2004.
[63] Z. Yang, Y. Chang, B. Liu, and L. Wei, Effects of composition on phase structure, microstructure and electrical properties of (K0.5Na0.5)NbO3–LiSbO3 ceramics, Mater. Sci. Eng. A., 432, 292-298, 2006.
[64] J. G. Wu, T. Peng, Y. Y. Wang, D. Q. Xiao, J. M. Zhu, Jin Y, J. G. Zhu, P. Yu, L. Wu, and Y. H. Jiang, Effects of composition on phase structure, microstructure and electrical properties of (K0.5Na0.5)NbO3–LiSbO3 ceramics, J. Am. Ceram. Soc., 91, 319-321, 2008.
[65] J. G. Wu, D. Q. Xiao, Y. Y. Wang, J. G. Zhu, L. Wu, and Y. H. Jiang, Effects of K/Na ratio on the phase structure and electrical properties of (KxNa0.96−xLi0.04)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics, Appl. Phys. Lett., 91, 252907, 2007.
[66] H. L. Du, D. J. Liu, F. S. Tang, D. M. Zhu, and W. C. Zhou, Microstructure, Piezoelectric, and Ferroelectric Properties of Bi2O3-Added (K0.5Na0.5)NbO3 Lead-Free Ceramics, J. Am. Ceram. Soc., 90, 2824-2829, 2007.
[67] H. Du, F. Luo, S. Qu, Z. Pei, D. Zhu, and W. Zhou, Phase structure, microstructure, and electrical properties of bismuth modified potassium-sodium niobium lead-free ceramics, J. Appl. Phys., 102, 054102, 2007.
[68] J. Wu, Y. Wang, D. Xiao, J. Zhu, and Z. Pu, Effects of Ag content on the phase structure and piezoelectric properties of (K0.44−xNa0.52Li0.04Agx)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics, Appl. Phys. Lett., 91, 132914, 2007.
[69] Y. Wang, J.g Wu, D. Xiao, J. Zhu, Y. Jin, J. Zhu, P. Yu, L. Wu, and X. Li, Microstructure, dielectric, and piezoelectric properties of (Li, Ag, Ta) modified (K0.50Na0.50)NbO3 lead-free ceramics with high Curie temperature, J. Appl. Phys., 102, 054101, 2007.
[70] L. Wu, D. Q. Xiao, D. M. Lin, J. G. Zhu, and P. Yu, Synthesis and Properties of [Bi0:5(Na1-xAgx)0.5]1-yBayTiO3 Piezoelectric Ceramics, Jpn. J. Appl. Phys., 44, 8515–8518, 2005.
[71] B. Malic, J.z Bernard, A. Bencan, and M. Kosec, Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics, J Eur Ceram. Soc., 28, 1191-1196, 2007.
[72] Y. Guo, K. Kakimoto, and H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics, Appl. Phys. Lett., 85, 4121, 2004.
[73] Y. Wang, J. Wu, D. Xiao, J. Zhu, P. Yu, L. Wu, and X. Li, Piezoelectric properties of (Li, Ag, Sb) modified (K0.50Na0.50)NbO3 lead-free ceramics, J. Alloy. Comp., 462, 310–314, 2008.
[74] S. J. Park, H. Y. Park, K. H. Cho, S. Nahm, H. G. Lee, D. H. Kim, and B. H. Choi, Effect of CuO on the sintering temperature and piezoelectric properties of lead-free 0.95(Na0.5K0.5)NbO3–0.05CaTiO3 ceramics, Mater Res Bull., 43,3580-3586, 2008.
[75] P. Zhao, B. P. Zhang, and R. Tu, High Piezoelectric d33 Coefficient in Li/Ta/Sb-Codoped Lead-Free (Na,K)NbO3 Ceramics Sintered at Optimal Temperature, J. Am. Ceram. Soc., 91, 3078–81, 2008.
[76] P. Zhao, R. Tu, T. Goto, B. P. Zhang, and S. Yang, Effect of Ta Content on Phase Structure and Electrical Properties of Piezoelectric Lead-Free [(Na0.535K0.480)0.942Li0.058](Nb1−xTax)O3 Ceramics, J. Am. Ceram. Soc., 91, 3440–3443, 2008.
[77] J. Wu, D. Xiao, Y. Wang, W. Wu, B. Zhang, and J. Zhu, CaTiO3-Modified (K0.50Na0.50)(Nb0.96Sb0.04)O3 Lead-Free Piezoelectric Ceramics, J. Am. Ceram. Soc., 91, 3402–3404, 2008.
[78] Y. Wang, J. Wu, D. Xiao, W. Wu, B. Zhang, L. Wu, and J. Zhu, Microstructure and Electrical Properties of [(K0.50Na0.50)0.95−xLi0.05Agx](Nb0.95Ta0.05)O3 Lead-Free Ceramics, J Am Ceram Soc., 91, 2772-75, 2008.
[79] R. J. Xie, Y. Akimune, R. Wang, N. Hirosaki, and T. Nishimura, Dielectric and Piezoelectric Properties of Barium-substituted Sr1.9Ca0.1NaNb5O15 Ceramics, Jpn. J. Appl. Phys., 42 , 7404–7409, 2003.
[80] L.E. Cross, R.C. Pohanka, Ferroelectricity in bismuth oxide type layer structure compounds, Mater. Res. Bull., 6, 938-949, 1971.
[81] X. Gao, Z. Zhou, J. Xue and J. Wang, Effects of Excess Bi2O3 on the Ferroelectric Behavior of Nd-Doped Bi4Ti3O12 Thin Films, J. Am. Ceram. Soc., 88, 1037-40, 2005.
[82] T. Takenaka, and H. Nagata, Current status and prospects of lead-free piezoelectric ceramics, J. Eur. Ceram. Soc., 25, 2693-2700, 2005.
[83] M. Villegas, A. C. Caballero, C. Moure, P. Durán, and J. F. Fernández, Factors Affecting the Electrical Conductivity of Donor-Doped Bi4Ti3O12 Piezoelectric Ceramics, J. Am. Ceram. Soc., 82, 2411-2416, 1999.
[84] T. Yakeuchi, T. tani, and Y. saito, Piezoelectric Properties of Bismuth Layer-Structured Ferroelectric Ceramics with a Preferred Orientation Processed by the Reactive Templated Grain Growth Method, Jpn. J. Appl. Phys., 83, 5553-5556, 1999.
[85] D. Q. Xiao, D. M Lin, J. G. Zhu, P. Yu, Y. W. Liao, L. Wu, Y. Zhuang, and Q. WE, ―Recent Progresses on Researches of New BNT-Based Lead-Free Piezoelectric Ceramics, Ferroelectrics, 358, 93–97, 2007.
[86] Jose F. Ferna ndez, Low-temperature Sintering and Electrical Properties of Chemically W-doped Bi4Ti3O12 Ceramics, J. Euro. Ceram. Soc., 19, 1183-1186, 1999.
[87] M. Suzuki, H. Nagata, J. Ohara, H. Funakuro and T. Takenaka, Bi3-xMxTiTaO9 (M = La or Nd) Ceramics with High Mechanical Quality Factor Qm, Jpn. J. Appl. Phys., 42, 6090–6093, 2003.
[88] T. Takenaka, and H. Nagata, Grain Orientation and Electrical Properties of Some Bismuth Layer-Structured Ferroelectrics for Lead-Free Piezoelectric Applications, Ferroelectrics, 336, 119–136, 2006.
[89] C. Karthik, N. Ravishankar, K. B. R. Varma, M. Maglione, R. Vondermuhll, and J. Etourneau, Relaxor behavior of K0.5La0.5Bi2Nb2O9 ceramics, Appl. Phys. Lett., 89, 042905, 2006.
[90] R. J. Xie, Y. Akimune, K. Matsuo, T. Sugiyama, N. Hirosaki, and T. Sekiya, Dielectric and ferroelectric properties of tetragonal tungsten bronze Sr2−xCaxNaNb5O15 (x = 0.05–0.35) ceramics, Appl. Phys. Lett., 80, 835-837, 2002.
[91] K. Umakantham, S. N. Murty, K. S. Rao, and A. Bhanumathi, Effect of rare-earth ions on the properties of modified (SrBa)Nb2O6 ceramics, J. Mater. Sci. Lett., 6, 565-567, 1987.
[92] M. D. Maeder, D. Damjanovic, and N. Setter, Lead Free Piezoelectric Materials, J. Elec., 13, 385–392, 2004.
[92] M. Kimura, T. Minamikawa, A.ando, and Y. Sakabe, Temperature Characteristics of (Ba1-xSrx)2NaNb5O15 Ceramics, Jpn. J. Appl. Phys., 36 , 6051-6054, 1997.
[93] Y. Doshida, S. Kishimoto, K. Ishii, and H. Kishi, Miniature Cantilever-Type Ultrasonic Motor Using Pb-Free Multilayer Piezoelectric Ceramics, Jpn. J. Appl. Phys., 46, 4921-4925, 2007.
[94] H. Yilmaz, S. T. McKinstry, and G. L. Messing, (Reactive) Templated Grain Growth of Textured Sodium Bismuth Titanate (Na1/2Bi1/2TiO3-BaTiO3) Ceramics—II Dielectric and Piezoelectric Properties, J. Electro. Ceram., 11, 217-226, 2003.
[95] P. D. Martín, A. Castro, P. Millán and B. Jiménez, Influence of Bi-site Substitution on the Ferroelectricity of the Aurivillius Compound Bi2SrNb2O9, J. Mater. Res., 13, 2565-71, 1998.
[96] K. Matsuo, R. J. XIE, Y. Akimune, and T. Sugiyama, Preparation of Lead-Free Sr2-xCaxNaNb5O15(x=0.1)-Based Piezoceramics with Tungsten Bronze Structure, J. Ceram. Soc. Jpn., 110, 491-494, 2002.
[97] P. K Patro, A. R. Kulkarni, S.M. Gupta, C. S. Harendranath (2006) In:Kharat DK (ed) National seminar on advances in electroceramics (NSAE-2006), Armament Research & Development Establishment, Pune, India, 146–153.
[98] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Intriduction to Ceranics, edition, Wiley, New York, 1986.
[100] K. C. Kao, ―Dielectric Phenomena in Solids,‖ Elsievier Academic Press, San Diego, California, 2004.
[101] G. Burn, Solid State Physics, Academic Press, ISBN 0-12-146070-3, 1985.
[102] C. M. Cheng, Study of AB2O3(A=Mg, Zn; B=Ta Nb) Microwave Dielectric Materials and its Applications, Department of Engineering of National Sun Yat-Sen University, 2008
[103] J. Moulson, and J. M. Herbert, Electroceramics, 2th edition, John Wiley & Sons, Inc. New York, 1946.
[104] W. Kanzig, Ferroelectrics and Antiferroelectrics, Academic Press, 1957.
[105] D.Berlincount and H. H. A.Krueger, Domain processes in lead titanate zirconate and barium titanate ceramics, J. Appl. Phys., 30, 1804-10, 1959.
[106] Y. Hiruma. H. Nagata, T. Takenaka, Phase Transition Temperatures and Piezoelectric Properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–BaTiO3 Lead-Free Piezoelectric Ceramics, Jpn. J. Appl. Phys., 45, 7409-7412, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊