|
[1] Kittel(編), 洪連輝(譯), 劉立基(譯), 魏榮君(譯), “固態物理導論”, 高立圖書有限公司, 9-22, 98. [2] 王永齡, “功能陶瓷性能與應用”, 科學出版社, 1-79, 2003. [3] 池田拓郎(編), 陳世春(譯), “基本壓電材料學”, 復漢出版社, 24-26, 86. [4] 吳朗, “電子陶瓷(入門)”, 全欣資訊圖書, 6-132, 81. [5] 國立編譯館, 邱碧芳, “電子陶瓷材料”, 財團法人徐氏基金會, 1-465, 86. [6] 程道腴, 鄭武輝, “工業陶瓷”, 徐氏基金會, 16-71, 74. [7] 黃坤祥, 馮慶芬, “粉末冶金學”, 新文京開發出版有限公司, 129-536, 91. [8] 葉思武, ”新陶瓷學”, 復文書局, 66-78, 81. [9] 劉國雄, 鄭晃忠, 李勝隆, 林樹均, 葉均蔚, “工程材料科學(新版)”, 全華科技圖書股份有限公司, 85-766, 2006. [10] 謝煜宏, “電子材料”, 新文京開發出版有限公司, 68-210, 92. [11] 吳朗, 電子陶瓷(壓電), 全欣科技, 台北, 1904. [12] B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, New York, Academic Press Limited, 1971. [13] L. Egerton, and D. M. Dillon, Piezoelectric and Dielectric Properties of Ceramics in System Potassium –Sodium Niobate, J. Am. Ceram. Soc., 42, 438-442, 1959. [14] K. Uchino, Ferroelectric Device, Marcel Dekker, Inc. New York, 2000. [15] A. J. Moulson and J. M. Herbert, Electroceramics, 2nd Ed., John Wiley and Sons, Inc., New York, 1996. [16] M. Takahashi, N. Tsubouchi, M. Ypnezawa, T. Ohno, and T. Akashi, Piezoelectric properties of ternary ceramic compounds consisting either of Pb(Mn1/3Nb2/3)O3 or Pb(Mn1/2Nb1/2)O3 with PbTiO3-PbZrO3, J. J. Soc. Powder and Powder Metallurgy., 20, 274-284, 1974. [17] V. Koval, C. Alemany, J. Briancin, H. Brunckova, and K. Soksl, Effect of PMN modification on structure and electrical response of xPMN-(1-x)PZT ceramic system, J. Eur. Ceram. Soc., 23, 1157-1166, 2003. [18] Z. G. Zhul, G. R. Li, W. Z. Zhang, and Q. R. Yinl, Microstructure and piezoelectric properties of PMS-PT ceramics, Mater. Sci. Eng. B., 38, 216-220, 2005. [19] F. Gao , L. H. Cheng, R. Z. Hong, J. Liu, C. J. Wang, and C. Tian, Crystal structure and piezoelectric properties of xPb(Mn1/3Nb2/3)O3–(0.2 − x)Pb(Zn1/3Nb2/3)O3–0.8Pb(Zr0.52Ti0.48)O3 ceramics, ceramic int., 35, 1719-1723, 2009. [20] Z. Yang, X. Chao, R. Zhang, Y. Chang, and Y. Chen, Fabrication and electrical characteristics of piezoelectric PMN–PZN–PZT ceramic transformers, Mater. Sci. Eng. B., 138 , 277-283, 2007. [21] Z. Yang, X. Zong, H. Li, and Y. Chang, Structure and electrical properties of new Pb(Zr,Ti)O3–Pb(Fe2 / 3W1 / 3)O3–Pb(Mn1 / 3Nb2 / 3)O3 ceramics, Mater. Lett., 59, 3476-3480, 2005. [22] J. F. Tressler, S. Alkoy, and R. E. Newnham, Piezoelectric sensors and sensor materials, J. Elec., 2, 257-272, 1998. [23] S. M. Choi, C. J. Stringer, T. R. Shrout, and C. A. Randall, Structure and property investigation of a B-base perovskite solid solution: (1-x)Bi(Ni1/2Ti1/2)O3-xPbTiO3, J. Appl. Phys., 98, 034108, 2005. [24] C. A. Randall, R. Eitel, T. R. Shrout, D. I. Woodward, and I. M. Reaney, Investigation of a high Tc piezoelectric system: (1-x)Bi(Mg1/2Ti1/2)O3- xPbTiO3, J. Appl. Phys., 98, 3633-39, 2004. [25] G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, New ferroelectrics of complex composition, Sov. Phys. Solid state,. 2, 2651-2654, 1961. [26] H. Takahashi, Y. Numamoto, J. Tani and S. Tsurekawa, Piezoelectric Properties of BaTiO3 Ceramics with High Performance Fabricated by Microwave Sintering, Jpn. J. Appl. Phys., 45, 7405-7408, 2006. [27] T. Karaki, K. Yan, T. Miyamoto, and M. Adachi, Lead-Free Piezoelectric Ceramics with Large Dielectric and Piezoelectric Constants Manufactured from BaTiO3 Nano-Powder, Jpn. J. Appl. Phys., 46, L97-L98, 2006. [28] T. Takenaka, H. Nagata, Y. Hiruma, Current Developments and Prospective of Lead-Free Piezoelectric Ceramics, Jpn. J. Appl. Phys., 47, 3787-3801, 2008. [29] T. Takenaka and H. Nagata, Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3 -1/2(Bi2O3‧Sc2O3) system, J. Eur. Ceram. Soc., 25, 2693-2700, 2005. [30] A. Sanson, and R. W. Whatmore, Properties of Bi4Ti3O12–(Na1/2Bi1/2)TiO3 Piezoelectric Ceramics, Jpn. J. Appl. Phys., 41, 7127–7130, 2002. [31] X. Wang, Hellen, L. W. Chan, and C. L. Choy, Piezoelectric and dielectric properties of CeO2-added (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics, Sol. Stat. Comm., 125, 395-399. 2003. [32] Y. Li, W. Chen, Q. Xu, J. Zhou, and X. Gu, Piezoelectric and ferroelectric properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3 piezoelectric ceramics Mater. Lett., 59, 1361-1364, 2005. [33] B. J. Chu, D. R. Chen, G. R. Li, Q. R. Yin, Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics, J. Eur. Ceram. Soc., 22, 2115-2121, 2002. [34] Y. Hiruma, K. Yoshii, R. Aoyagi, H. Nagata, and T. Takenaka, Piezoelectric Properties and Depolarization Temperatures of (Bi1/2Na1/2)TiO3- (Bi1/2K1/2)TiO3- BaTiO3 Lead-Free Piezoelectric Ceramics, Key Engineering Materials., 320, 23-26, 2006. [35] A. Yoshio, and S. Mikiya, Piezoelectric ceramic material and its production, Jp-11-180769, 1999- 07-06. [36] B. J. Chu, D. R. Chen, G. R. Li, and Q. R. Yin, Electric properties of (Bi1/2Na1/2)TiO3-BaTiO3 ceramics, J. Euro. Ceram. Soc., 22, 2115-2121, 2002. [37] Y. R. Zhang, J. F. Li, and B. P. Zhang, Enhancing Electrical Properties in NBT–KBT Lead-Free Piezoelectric Ceramics by Optimizing Sintering Temperature, J. Am. Ceram. Soc., 91, 2716-19, 2008. [38] T. Takenaka, K. Sakata, and K. Toda, Piezoelectric Properties of (Bi1/2Na1/2TiO3) - Based ceramics, Ferroelectrics, 106 , 375–380, 1990. [39] H. D. Megaw, Seven phase of sodium niobate, Ferroelectric, 7, 87-89, 1974. [40] B. Jaffe, R. S. R., and S. Marzullo, Properties of piezoelectric ceramic in the solid-solution series lead titanate-zirconate oxide:tin oxide and lead titanate lead hafnate, J. Res. Natl. Bur. Stand., 55, 239-245, 1955. [41] H. Ishii, H. Nagata, and T. Takenaka, Morphotropic Phase Boundary and Electrical Properties of Bisumuth Sodium Titanate–Potassium Niobate Solid-Solution Ceramics, Jpn. J. Appl. Phys., 40, 5660-5663, 2001. [42] Shirane, Ferroelectric crystals, Pramon, New York, 1962. [43] M. Kosec, and D. Kolar, On activated sintering and electrical properties of NaKNbO3, Mat. Res. Bull., 10, 335-339, 1975. [44] G. Shiran, R. neweham, and R. Pepinsky, Dielectric properties and phase transition of NaNbO3 and (Na, K)NbO3, Phys. Rev., 96 (1954) 581-588. [45] R. E. Jaeger, and L. Egerton, Hot Pressing of Potassium-Sodium Niobates, J. Am. Ceram. Soc., 45, 209-216, 1962. [46] R. Wang, R. Xiel, T. Sekiy, and Y. Shimojo, Facrbation and characterization of Potassium-Sodium Niobates piezoelectric ceramics by spark-plasma-sintering method, Mat. Res. Bull., 10, 335-340, 2004. [47] H. Du, D. Liu, F. Tang, D. Zhu, and W. Zhou, Microstructure, Piezoelectric, and Ferroelectric Properties of Bi2O3-Added (K0.5Na0.5)NbO3 Lead-Free Ceramics, J. Am. Ceram. Soc., 90, 2824–2829, 2007. [48] R. Wang, R. Xie, T. Sekiya, and Y. Shimojo, Fabrication and characterization of potassium–sodium niobate piezoelectric ceramics by spark-plasma-sintering method, Mat. Res. Bull., 39, 1709-1715, 2004. [49] G. H. HAERTLIN, Properties of Hot-Pressed Ferroelectric Alkali Niobate Ceramics, J. Am. Ceram. Soc., 50, 329-330, 1967. [50] D. Lin, K. W. Kwok, and H. L. W. Chan, Piezoelectric and ferroelectric properties of Cu-doped K0.5Na0.5NbO3 lead-free ceramics, J. Phys. D:Appl. Phys., 41, 045401, 2008. [51] D. Lin, K. W. Kwok, and H. L. W. Chan, Piezoelectric properties and hardening behavior of K5.4Cu1.3Ta10O29-doped K0.5Na0.5NbO3 ceramics, J. Appl. Phys., 103, 064105, 2008. [52] Q. Chen, L. Chen, Q. Li, Xi Yue, and J. Zhu, Piezoelectric properties of K4CuNb8O23 modified (Na0.5K0.5)NbO3 lead-free piezoceramics, Appl. Phys. Lett., 102, 104109, 2007. [53] J. Zeng, Y. Zhang, L. Zheng, G. Li and Q. Yin, Enhanced Ferroelectric Properties of Potassium Sodium Niobate Ceramics Modified by Small Amount of K3Li2Nb5O15, J. Am. Ceram. Soc., 92, 752-754, 2009. [54] H. Y. Park, J. Y. Choi, M. K. Choi, K. H. Cho, and S. Nahm, Effect of Cuo on the sintering temperature ceramics, J. Am. Ceram. Soc., 91,2374-2377, 2008. [55] M. S. Kim, S. J. Jeong and J. S. Song, Microstructures and Piezoelectric Properties in the Li2O-Excess 0.95(Na0.5K0.5)NbO3–0.05LiTaO3 Ceramics, J. Am. Ceram. Soc., 90, 2338-2340, 2007. [56] F. R. Marcos, P. Ochoa, J. F. Fernandez, Sintering and properties of lead-free. (K,Na,Li)(Nb,Ta,Sb)O3 ceramics, J. Euro. Ceram. Soc., 27, 4125-4129, 2007. [57] Y. F. Chang, Z. P. Yang, Y. T. Hou, Z. H. Liu, and Z. L. Wang, “Effects of Li content on the phase structure and electrical properties of lead-free „K0.46−x/2Na0.54−x/2Lix…„Nb0.76Ta0.20Sb0.04…O3 ceramic”, Appl. Phys. Lett., 90, 232905, 2007. [58] Y. Dai, X. Zhang, and G. Zhou, Phase transitional behavior in K0.5Na0.5NbO3 – LiTaO3 ceramics, J. App.l Phys., 102,034102, 2007 [59] P. Zhao and B. P. Zhang, Enhancing piezoelectric d33 coefficient in Li/Ta-codoped lead-free „Na,K…NbO3 ceramics by compensating Na and K at a fixed ratio, Appl. Phys. Lett., 91, 172901, 2007. [60] M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, and S. Hirano, Processing and Piezoelectric Properties of Lead-Free (K,Na) (Nb,Ta) O3 Ceramics, J. Am. Ceram. Soc., 88, 1190-1196, 2005. [61] Y. Saito, and H. Takao, High performance lead-free piezoelectric ceramics in the (K,Na)NbO 3-LiTaO3 solid solution system, Ferroelectrics, 338, 17-32, 2006. [62] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Lead-free piezoceramics, Nature, 432 (7013), 84-87, 2004. [63] Z. Yang, Y. Chang, B. Liu, and L. Wei, Effects of composition on phase structure, microstructure and electrical properties of (K0.5Na0.5)NbO3–LiSbO3 ceramics, Mater. Sci. Eng. A., 432, 292-298, 2006. [64] J. G. Wu, T. Peng, Y. Y. Wang, D. Q. Xiao, J. M. Zhu, Jin Y, J. G. Zhu, P. Yu, L. Wu, and Y. H. Jiang, Effects of composition on phase structure, microstructure and electrical properties of (K0.5Na0.5)NbO3–LiSbO3 ceramics, J. Am. Ceram. Soc., 91, 319-321, 2008. [65] J. G. Wu, D. Q. Xiao, Y. Y. Wang, J. G. Zhu, L. Wu, and Y. H. Jiang, Effects of K/Na ratio on the phase structure and electrical properties of (KxNa0.96−xLi0.04)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics, Appl. Phys. Lett., 91, 252907, 2007. [66] H. L. Du, D. J. Liu, F. S. Tang, D. M. Zhu, and W. C. Zhou, Microstructure, Piezoelectric, and Ferroelectric Properties of Bi2O3-Added (K0.5Na0.5)NbO3 Lead-Free Ceramics, J. Am. Ceram. Soc., 90, 2824-2829, 2007. [67] H. Du, F. Luo, S. Qu, Z. Pei, D. Zhu, and W. Zhou, Phase structure, microstructure, and electrical properties of bismuth modified potassium-sodium niobium lead-free ceramics, J. Appl. Phys., 102, 054102, 2007. [68] J. Wu, Y. Wang, D. Xiao, J. Zhu, and Z. Pu, Effects of Ag content on the phase structure and piezoelectric properties of (K0.44−xNa0.52Li0.04Agx)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics, Appl. Phys. Lett., 91, 132914, 2007. [69] Y. Wang, J.g Wu, D. Xiao, J. Zhu, Y. Jin, J. Zhu, P. Yu, L. Wu, and X. Li, Microstructure, dielectric, and piezoelectric properties of (Li, Ag, Ta) modified (K0.50Na0.50)NbO3 lead-free ceramics with high Curie temperature, J. Appl. Phys., 102, 054101, 2007. [70] L. Wu, D. Q. Xiao, D. M. Lin, J. G. Zhu, and P. Yu, Synthesis and Properties of [Bi0:5(Na1-xAgx)0.5]1-yBayTiO3 Piezoelectric Ceramics, Jpn. J. Appl. Phys., 44, 8515–8518, 2005. [71] B. Malic, J.z Bernard, A. Bencan, and M. Kosec, Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics, J Eur Ceram. Soc., 28, 1191-1196, 2007. [72] Y. Guo, K. Kakimoto, and H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics, Appl. Phys. Lett., 85, 4121, 2004. [73] Y. Wang, J. Wu, D. Xiao, J. Zhu, P. Yu, L. Wu, and X. Li, Piezoelectric properties of (Li, Ag, Sb) modified (K0.50Na0.50)NbO3 lead-free ceramics, J. Alloy. Comp., 462, 310–314, 2008. [74] S. J. Park, H. Y. Park, K. H. Cho, S. Nahm, H. G. Lee, D. H. Kim, and B. H. Choi, Effect of CuO on the sintering temperature and piezoelectric properties of lead-free 0.95(Na0.5K0.5)NbO3–0.05CaTiO3 ceramics, Mater Res Bull., 43,3580-3586, 2008. [75] P. Zhao, B. P. Zhang, and R. Tu, High Piezoelectric d33 Coefficient in Li/Ta/Sb-Codoped Lead-Free (Na,K)NbO3 Ceramics Sintered at Optimal Temperature, J. Am. Ceram. Soc., 91, 3078–81, 2008. [76] P. Zhao, R. Tu, T. Goto, B. P. Zhang, and S. Yang, Effect of Ta Content on Phase Structure and Electrical Properties of Piezoelectric Lead-Free [(Na0.535K0.480)0.942Li0.058](Nb1−xTax)O3 Ceramics, J. Am. Ceram. Soc., 91, 3440–3443, 2008. [77] J. Wu, D. Xiao, Y. Wang, W. Wu, B. Zhang, and J. Zhu, CaTiO3-Modified (K0.50Na0.50)(Nb0.96Sb0.04)O3 Lead-Free Piezoelectric Ceramics, J. Am. Ceram. Soc., 91, 3402–3404, 2008. [78] Y. Wang, J. Wu, D. Xiao, W. Wu, B. Zhang, L. Wu, and J. Zhu, Microstructure and Electrical Properties of [(K0.50Na0.50)0.95−xLi0.05Agx](Nb0.95Ta0.05)O3 Lead-Free Ceramics, J Am Ceram Soc., 91, 2772-75, 2008. [79] R. J. Xie, Y. Akimune, R. Wang, N. Hirosaki, and T. Nishimura, Dielectric and Piezoelectric Properties of Barium-substituted Sr1.9Ca0.1NaNb5O15 Ceramics, Jpn. J. Appl. Phys., 42 , 7404–7409, 2003. [80] L.E. Cross, R.C. Pohanka, Ferroelectricity in bismuth oxide type layer structure compounds, Mater. Res. Bull., 6, 938-949, 1971. [81] X. Gao, Z. Zhou, J. Xue and J. Wang, Effects of Excess Bi2O3 on the Ferroelectric Behavior of Nd-Doped Bi4Ti3O12 Thin Films, J. Am. Ceram. Soc., 88, 1037-40, 2005. [82] T. Takenaka, and H. Nagata, Current status and prospects of lead-free piezoelectric ceramics, J. Eur. Ceram. Soc., 25, 2693-2700, 2005. [83] M. Villegas, A. C. Caballero, C. Moure, P. Durán, and J. F. Fernández, Factors Affecting the Electrical Conductivity of Donor-Doped Bi4Ti3O12 Piezoelectric Ceramics, J. Am. Ceram. Soc., 82, 2411-2416, 1999. [84] T. Yakeuchi, T. tani, and Y. saito, Piezoelectric Properties of Bismuth Layer-Structured Ferroelectric Ceramics with a Preferred Orientation Processed by the Reactive Templated Grain Growth Method, Jpn. J. Appl. Phys., 83, 5553-5556, 1999. [85] D. Q. Xiao, D. M Lin, J. G. Zhu, P. Yu, Y. W. Liao, L. Wu, Y. Zhuang, and Q. WE, ―Recent Progresses on Researches of New BNT-Based Lead-Free Piezoelectric Ceramics, Ferroelectrics, 358, 93–97, 2007. [86] Jose F. Ferna ndez, Low-temperature Sintering and Electrical Properties of Chemically W-doped Bi4Ti3O12 Ceramics, J. Euro. Ceram. Soc., 19, 1183-1186, 1999. [87] M. Suzuki, H. Nagata, J. Ohara, H. Funakuro and T. Takenaka, Bi3-xMxTiTaO9 (M = La or Nd) Ceramics with High Mechanical Quality Factor Qm, Jpn. J. Appl. Phys., 42, 6090–6093, 2003. [88] T. Takenaka, and H. Nagata, Grain Orientation and Electrical Properties of Some Bismuth Layer-Structured Ferroelectrics for Lead-Free Piezoelectric Applications, Ferroelectrics, 336, 119–136, 2006. [89] C. Karthik, N. Ravishankar, K. B. R. Varma, M. Maglione, R. Vondermuhll, and J. Etourneau, Relaxor behavior of K0.5La0.5Bi2Nb2O9 ceramics, Appl. Phys. Lett., 89, 042905, 2006. [90] R. J. Xie, Y. Akimune, K. Matsuo, T. Sugiyama, N. Hirosaki, and T. Sekiya, Dielectric and ferroelectric properties of tetragonal tungsten bronze Sr2−xCaxNaNb5O15 (x = 0.05–0.35) ceramics, Appl. Phys. Lett., 80, 835-837, 2002. [91] K. Umakantham, S. N. Murty, K. S. Rao, and A. Bhanumathi, Effect of rare-earth ions on the properties of modified (SrBa)Nb2O6 ceramics, J. Mater. Sci. Lett., 6, 565-567, 1987. [92] M. D. Maeder, D. Damjanovic, and N. Setter, Lead Free Piezoelectric Materials, J. Elec., 13, 385–392, 2004. [92] M. Kimura, T. Minamikawa, A.ando, and Y. Sakabe, Temperature Characteristics of (Ba1-xSrx)2NaNb5O15 Ceramics, Jpn. J. Appl. Phys., 36 , 6051-6054, 1997. [93] Y. Doshida, S. Kishimoto, K. Ishii, and H. Kishi, Miniature Cantilever-Type Ultrasonic Motor Using Pb-Free Multilayer Piezoelectric Ceramics, Jpn. J. Appl. Phys., 46, 4921-4925, 2007. [94] H. Yilmaz, S. T. McKinstry, and G. L. Messing, (Reactive) Templated Grain Growth of Textured Sodium Bismuth Titanate (Na1/2Bi1/2TiO3-BaTiO3) Ceramics—II Dielectric and Piezoelectric Properties, J. Electro. Ceram., 11, 217-226, 2003. [95] P. D. Martín, A. Castro, P. Millán and B. Jiménez, Influence of Bi-site Substitution on the Ferroelectricity of the Aurivillius Compound Bi2SrNb2O9, J. Mater. Res., 13, 2565-71, 1998. [96] K. Matsuo, R. J. XIE, Y. Akimune, and T. Sugiyama, Preparation of Lead-Free Sr2-xCaxNaNb5O15(x=0.1)-Based Piezoceramics with Tungsten Bronze Structure, J. Ceram. Soc. Jpn., 110, 491-494, 2002. [97] P. K Patro, A. R. Kulkarni, S.M. Gupta, C. S. Harendranath (2006) In:Kharat DK (ed) National seminar on advances in electroceramics (NSAE-2006), Armament Research & Development Establishment, Pune, India, 146–153. [98] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Intriduction to Ceranics, edition, Wiley, New York, 1986. [100] K. C. Kao, ―Dielectric Phenomena in Solids,‖ Elsievier Academic Press, San Diego, California, 2004. [101] G. Burn, Solid State Physics, Academic Press, ISBN 0-12-146070-3, 1985. [102] C. M. Cheng, Study of AB2O3(A=Mg, Zn; B=Ta Nb) Microwave Dielectric Materials and its Applications, Department of Engineering of National Sun Yat-Sen University, 2008 [103] J. Moulson, and J. M. Herbert, Electroceramics, 2th edition, John Wiley & Sons, Inc. New York, 1946. [104] W. Kanzig, Ferroelectrics and Antiferroelectrics, Academic Press, 1957. [105] D.Berlincount and H. H. A.Krueger, Domain processes in lead titanate zirconate and barium titanate ceramics, J. Appl. Phys., 30, 1804-10, 1959. [106] Y. Hiruma. H. Nagata, T. Takenaka, Phase Transition Temperatures and Piezoelectric Properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–BaTiO3 Lead-Free Piezoelectric Ceramics, Jpn. J. Appl. Phys., 45, 7409-7412, 2006.
|