跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 01:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊凱翔
研究生(外文):Kai-Shiang Yang
論文名稱:實現在心電圖上的最佳IIR濾波器設計
論文名稱(外文):Optimal IIR Filter Design in ECG Filtering Implementations
指導教授:柯賢儒柯賢儒引用關係
指導教授(外文):Hsien-Ju Ko
口試委員:柯賢儒陳正一李正吉
口試委員(外文):Hsien-Ju KoCheng-I ChenCheng-Chi Lee
口試日期:2012-06-22
學位類別:碩士
校院名稱:亞洲大學
系所名稱:光電與通訊學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:53
中文關鍵詞:心電圖核磁共振無限脈衝響應數位濾波器有限字長固定點運算
外文關鍵詞:ECGMRIIIRdigital filterFWLfixed-point arithmetic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1329
  • 評分評分:
  • 下載下載:142
  • 收藏至我的研究室書目清單書目收藏:0
心電圖在醫療照護上是一個重要的前端訊號,但在需要與核磁共振 (MRI)共同使用的環境下,或當心電圖儀器以小型化機構實現時,非常容易受到雜訊的干擾。本論文中,我們使用定點式運算的無限脈衝響應(IIR)濾波器濾除心電圖雜訊,因此,我們可以利用IIR濾波器先天所需運算較為精簡的特性下,使用較低位元之微處理器,達到有效節省成本的目的。我們提出了一種最佳轉換矩陣,可將任何初始的濾波器參數,利用所發展之公式解,一次得到最佳的濾波器實現參數。最後,電腦模擬驗證了理論的有效性。
ECG is an important front-end signal in healthcare applications. However, ECG equipment used in magnetic resonance imaging (MRI) or implemented by miniature mechanisms is susceptible to noise. In this paper, we use the mode of fixed-point arithmetic Infinite Impulse Response (IIR) filters to reduce ECG noise. We utilize the properties of less computational consumptions of IIR filters, and use the microprocessor with lower register length to achieve the cost-effective purposes. We propose an optimal transformation matrix that can transfer any initial filter parameters to obtain the optimal realization by using developed closed-form solutions. Finally, computer simulations are performed to illustrate the effectiveness of the proposed approach.
目錄

摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 5
1.3 研究目的 5
第二章 文獻探討 6
2.1 心電圖 6
2.1.1 歷史 6
2.1.2 原理 7
2.1.3 波形和間期 9
2.2 數位濾波器 11
2.2.1 濾波器原理 11
2.2.2 濾波器種類 11
2.2.3 IIR數位濾波器 14
2.2.4 FIR數位濾波器 15
2.2.5 濾波器形式 16
2.3 改良式成本函數推導 17
第三章 研究方法 19
3.1 系統模型 19
3.1.1 問題公式化 19
3.1.2固定點運算 19
3.2 針對固定點數位濾波器實現的穩定度分析 22
3.3特徵值靈敏度及正規化轉換 23
第四章 數值範例探討 27
4.1 數值範例 27
第五章 結論 46
參考文獻 47

圖目錄

圖1.1.1 近50年台灣每年出生人口與死亡人口曲線圖 2
圖2.1.1埃因托芬的心電儀器 7
圖2.1.2 一秒時長的心電圖紙 8
圖2.2.1 高通RC濾波器 11
圖2.2.2 高通濾波器特性圖 12
圖2.2.3 低通RC濾波器 12
圖2.2.4 低通濾波器特性圖 12
圖2.2.5 串聯RLC的帶通濾波器 13
圖2.2.6 等效電路 13
圖2.2.7 帶通濾波器特性圖 13
圖2.2.8 串聯RLC的帶阻濾波器 14
圖2.2.9 帶阻濾波器特性圖 14
圖4.2.1正常的心電圖訊號 27
圖4.2.2受到50HZ雜訊干擾的心電圖訊號 28
圖4.2.3 BUTTERWORTH三階響應圖 29
圖4.2.4 BUTTERWORTH濾波器之理想濾波結果圖 30
圖4.2.5 CHEBYSHEV II型三階響應圖 31
圖4.2.6 CHEBYSHEV II型濾波器之理想濾波結果圖 32
圖4.2.7 ELLIPTIC三階響應圖 33
圖4.2.8 ELLIPTIC濾波器之理想濾波結果圖 34
圖4.2.9未最佳化,BUTTERWORTH濾波器在字長12位元實際濾波結果圖 35
圖4.2.10未最佳化,CHEBYSHEV II型濾波器在字長12位元實際濾波結果圖 36
圖4.2.11未最佳化,ELLIPTIC濾波器在字長12位元實際濾波結果圖 37
圖4.2.12 BUTTERWORTH濾波器在字長12位元實際濾波結果圖 39
圖4.2.13 CHEBYSHEV II型濾波器在字長12位元實際濾波結果圖 40
圖4.2.14 ELLIPTIC濾波器在字長12位元實際濾波結果圖 41

表目錄

表2.1.1 波形與間期 10
表4.2.1針對BUTTERWORTH相似轉換矩陣的測量比較 42
表4.2.2 BUTTERWORTH相似轉換矩陣特徵值測量比較 42
表4.2.3針對CHEBYSHEV II型相似轉換矩陣的測量比較 42
表4.2.4 CHEBYSHEV II型相似轉換矩陣特徵值測量比較 43
表4.2.5針對ELLIPTIC相似轉換矩陣的測量比較 43
表4.2.6 ELLIPTIC相似轉換矩陣特徵值測量比較 43

[1]Dima Abi-Abdallah, Eric Chauvet, Latifa Bouchet-Fakri, Alain Bataillard, André Briguet and Odette Fokapu, “Reference signal extraction from corrupted ECG using wavelet decomposition for MRI sequence triggering: application to smallanimals,” BioMedical Engineering OnLine, vol. 5, no. 11, 2006.
[2]G. Li, and M. Gevers, "Optimal finite precision implementation of a state-estimate feedback controller," IEEE Trans. Circuits Syst., vol.CAS-38, pp. 1487-1499, 1990.
[3]G. Li and M. Gevers, "Comparative study of finite wordlength effects in shift and delta operator parameterizations," IEEE Trans. Automat. Contr., vol. 38, pp.803-807, 1993.
[4]M. Gevers and G. Li, Parametrizations in Control, Estimation and Filtering Problems: Accuracy Aspects, Communications and Control Engineering Series. London, U.K.:Springer-Verlag, 1993.
[5]A.G. Madievski, B.D.O. Anderson, and M. Gevers, "Optimum realizations of sampled-data controllers for finite-word-length sensitivity minimization," Automatica, vol. 31, pp. 367-379, 1995.
[6]Gang Li, "On pole and zero sensitivity of linear systems," IEEE Trans. Circuits Syst., vol. 44, pp.583-590, 1997.
[7]G. Li, "On the structure of digital controllers with finite word length consideration," IEEE Trans. Automat. Contr., vol. 43, pp. 689-693, 1998.
[8]R.H. Istepanian, G. Li, J. Wu, and J. Chu, "Analysis of sensitivity measures of finite-precision digital controller structures with closed-loop stability bounds", IEE Proc.-Control Theory Appl., vol. 145, pp. 472-478, 1998.
[9]S. Chen, J. Wu, R.H. Istepanian, J. Chu, and J.F. Whiborne, "Optimising stability bounds of finite-precision controller structures for sampled-data systems in the δ -operator domain," IEE Proc.-Control Theory Appl., vol. 146, pp. 517-526, Nov. 1999.
[10]J. F. Whidborne, R. S. H. Istepanian, and J. Wu, "Reduction of controller fragility by pole sensitivity minimization," IEEE Trans. Automat. Contr., vol. 46, pp. 320-325, 2001.
[11]J. Wu, S. Chen, G. Li, R.H. Istepanian, and J. Chu, "An improved closed-loop stability related measure for finite-precision digital controller realizations", IEEE Trans. Automat. Contr., vol. 46, no. 7, pp. 1162-1166, 2001.
[12]J. Wu, S. Chen, G. Li, and J. Chu, "Constructing sparse realisations of finite precision digital controllers based on a closed-loop stability related measure," IEE Proc.-Control Theory Appl., vol. 150, pp.61-68, 2003.
[13]Jun Wu, Sheng Chen, James F. Whidborne, and Jian Chu, "A unified closed-loop stability measure for finite-precision digital controller realizations implemented in different representation schemes," IEEE Trans. Automat. Contr., vol. 38, pp.816-822, 2003.
[14]Wen-Shyong Yu and Hsien-Ju Ko, "Improved eigenvalue sensitivity for finite precision digital controller Realisations via Orthogonal Hermitian Transform," IEE Proc. Control Theory Appl., vol. 150, pp. 365-375, 2003.
[15]Jinxin Hao, Gang Li, and Wan, C, “Two classes of efficient digital controller structures with stability consideration,” IEEE Trans. Automatic Control, vol. 51, no.1, pp. 164 – 170, Jan. 2006.
[16]Jun Wu, Gang Li, Sheng Chen, and Jian Chu ” A μ-based optimal finite-word-length controller design,” Automatica, vol. 44, pp. 3093-3099, 2008.
[17]Wen-Shyong Yu , Hsien-Ju Ko and Cheng-Chi Lee “Analysis and Design of the FWL Digital Observer/Controller Implementations: Eigenvalue Sensitivity Approach,” International Journal of Innovative Computing, Information and Control (SCI, EI), vol.9, no.6 pp.3961-3987, 2010.
[18]J.H. Wilkinson, Rounding Errors in Algebraic Processes, Englewood Cliffs, NJ: Prentice Hall, 1963.
[19]B.-S. Chen and C.-T. Kuo, "Stability analysis of digital filters under finite word length effects," IEE Proceedings, Pt. G, vol. 136, no. 4, pp. 167-172, 1989.9
[20]Hsien-Ju Ko and Wen-Shyong Yu, "Guaranteed robust stability of the closed-loop systems for digital controller implementations via orthogonal hermitian transform," IEEE Trans. Syst., Man, Cybern., vol. 34, no. 4, pp. 1923-1932, 2004 .
[21]Hsien-Ju Ko and Wen-Shyong Yu, Sensitivity minimization for controller implementations: Fixed-point approach,” American Control Conference (ACC 2004), Boston, Massachusetts, July 2, 2004
[22]Hsien-Ju Ko and Wen-Shyong Yu,"A Novel Approach to Stability Analysis of Fixed-Point Digital Filters under Finite Word Length Effects,"SICE Annual Conference 2008, Chofu, Tokyo, Japan, August 20-22, 2008
[23]M.A. Rotea and D. Williamson, "Optimal realizations of finite wordlength digital filters and controllers," IEEE Trans. Circuits Syst. I, vol. 42, pp. 61-72, 1995.
[24]C. Xiao, "Improved L2-sensitivity for state-space digital system," IEEE Trans. Signal Processing, vol. 45, pp. 837-840, 1997.
[25]Gang Li, "On pole and zero sensitivity of linear systems," IEEE Trans. Circuits Syst., vol. 44, pp.583-590, 1997.
[26]T. Hinamoto, Y. Zempo, Y. Nishino, and W.-S. Lu, "An Analytical approach for the synthesis of two-dimensional state-space filter structures with minimum weighted sensitivity," IEEE Trans. Circuits Syst. I, vol. 46, pp. 1172-1183, 1999.
[27]G. Li, M. Gevers, and Y. Sun, "Performance analysis of a new structure for digital filter implementation," IEEE Trans. Circuits Syst. I, vol. 47, pp. 474-482, 2000.
[28]Alan V. Oppenheim and Roland W. Schafer, Discrete-Time Signal Processing, Prentice Hall, 1989
[29]Yong Ching Lim, Ya Jun Yu, Kok Lay Teo, and Saramaki, T., "FRM-Based FIR Filters With Optimum Finite Word-Length Performance," IEEE Trans. Signal Processing, vol. 55, no.6, part 2, pp. 2914-2924, June 2007.
[30]維基百科,http://zh.wikipedia.org/wiki/ECG
[31]通信-ch4.pdf ,
http://www.eel.tsint.edu.tw/teacher/pyhuang/%E9%80%9A%E4%BF%A1/%E9%80%9A%E4%BF%A1-ch4.pdf
[32]余兆棠,陳順智,趙國建,蘇德仁 編著,"數位訊號處理",滄海書局,2010年5月。
[33]http://zh.wikipedia.org/wiki/%E5%B7%B4%E7%89%B9%E6%B2%83%E6%96%AF%E6%BB%A4%E6%B3%A2%E5%99%A8
[34]http://zh.wikipedia.org/wiki/%E5%88%87%E6%AF%94%E9%9B%AA%E5%A4%AB%E6%BB%A4%E6%B3%A2%E5%99%A8
[35]http://zh.wikipedia.org/zh-tw/%E6%A4%AD%E5%9C%86%E5%87%BD%E6%95%B0%E6%BB%A4%E6%B3%A2%E5%99%A8
[36]Hsien-Ju Ko and Wen-Shyong Yu, ”Improved Eigenvalue Sensitivity for Finite-Precision Digital Controller Realizations via Orthogonal Hermitian Transform,” IEE Proceedings Control Theory and Applications, vol. 150, No.4, pp. 365-375, 2003.
[37]T.H. Hinamoto, S. Yokoyama, T. Inoue, W. Zeng, and W.-S. Lu, ”Analysis and minimization of L2-sensitivity for linear systems and two-dimensional state-space filters using general controllability and observability grammians,” IEEE Trans. Circuits Syst. I, vol. 49, no. 9, pp. 1279-1289, 2002.
[38]C.-T. Chen, Linear System Theory and Design, 3rd Edition, Englewood Cliffs, NJ: Prentice Hall, 1999
[39]L.M. Smith and Jr., M.E. Henderson, ”Roundoff noise reduction in cascade realizations of FIR digital filters,” IEEE Trans. Signal Processing, vol. 48, pp. 1196-1200., 2000.
[40]K. Liu, R.E. Skelton, and K. Grigoriadis, ”Optimal controllers for finite wordlength implementation,” IEEE Trans. Automat. Contr., vol. 37, pp. 1294-1304, 1992.
[41]G.H. Gloub and C.F. Van Loan, Matrix Computations, 2nd edition, The Johns Hopkins University Press, 1989.
[42]Kodek, D.M, Performance limit of finite wordlength FIR digital filters, IEEE Trans. Signal Processing, vol. 53, no.7, pp. 2462 V 2469, July 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳克,余惠芳,陳文郎,林美娟(2011),家族企業專業經營與信用風險模型之實證研究,全球管理與經濟,7(2),1-19。
2. 余惠芳,陳文郎,馮惠珊,黎紅玲(2011),外部監控、代理問題與信用風險模型之實證研究,育達科大學報,29,47-66。
3. 余惠芳,陳文郎,馮惠珊,黎紅玲(2011),外部監控、代理問題與信用風險模型之實證研究,育達科大學報,29,47-66。
4. 余惠芳,陳文郎,馮惠珊,黎紅玲(2011),外部監控、代理問題與信用風險模型之實證研究,育達科大學報,29,47-66。
5. 余惠芳,陳文郎,馮惠珊,黎紅玲(2011),外部監控、代理問題與信用風險模型之實證研究,育達科大學報,29,47-66。
6. 余惠芳,王永昌(2011),財務預警與公司治理-台灣傳統產業之實證研究,應用經濟論叢,90,209-241。
7. 余惠芳,王永昌(2011),財務預警與公司治理-台灣傳統產業之實證研究,應用經濟論叢,90,209-241。
8. 余惠芳,王永昌(2011),財務預警與公司治理-台灣傳統產業之實證研究,應用經濟論叢,90,209-241。
9. 余惠芳,王永昌(2011),財務預警與公司治理-台灣傳統產業之實證研究,應用經濟論叢,90,209-241。
10. 吳克,余惠芳,陳文郎,林美娟(2011),家族企業專業經營與信用風險模型之實證研究,全球管理與經濟,7(2),1-19。
11. 吳克,余惠芳,陳文郎,林美娟(2011),家族企業專業經營與信用風險模型之實證研究,全球管理與經濟,7(2),1-19。
12. 吳克,余惠芳,陳文郎,林美娟(2011),家族企業專業經營與信用風險模型之實證研究,全球管理與經濟,7(2),1-19。