跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/02 00:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹宗勳
研究生(外文):Tsung-Hsun-Chan
論文名稱:穿隧二極體於InGaP/GaAs 太陽能電池聚光條件下之特性研究
論文名稱(外文):Study on tunnel diode of InGaP/GaAs for concentrating PV
指導教授:葉榮輝
指導教授(外文):Jung-Hui-Yeh
口試委員:施能夫葉榮輝趙志剛
口試委員(外文):Neng. Fu-ShihJung. Hui-YehChih, Kang-Chao
口試日期:2012-07-25
學位類別:碩士
校院名稱:亞洲大學
系所名稱:光電與通訊學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:40
中文關鍵詞:III-V族太陽能電池聚光溫度
外文關鍵詞:III-V compound solar cellscondensertemperature
相關次數:
  • 被引用被引用:0
  • 點閱點閱:808
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
III-V族太陽能電池於聚光條件下可有效提升轉換效率與特性,但聚光型太陽能電池在聚光時會因為溫度上升而影響特性表現,本論文以改變串接式太陽能電池的穿隧層材料,包含InGAP、GaAs及AlGaAs對太陽能電池特性之影響。結果顯示轉換效率大約在100倍聚光條件下有最佳值,超過此倍率則隨著聚光倍率的增加,轉換效率反而隨之下降。溫度效應的探討,是模擬電池聚光時處於數種溫度(27-400℃),代表各種聚光時可能的環境溫度情況。從結果可以看出隨著溫度的上升,在不同聚光條件下的填充因子與開路電壓均隨之下降,而短路電流則沒有太大的變化,最終造成轉換效率隨溫度的上升而下降。整體來看以AlGaAs為穿隧層材料在不同溫度與聚光條件下有最佳之特性表現。
Group III-V solar cell concentrator conditions can effectively enhance the conversion efficiency and features, concentrator solar cells in the condenser when the temperature rise and affect the characteristics of performance, this paper in order to change the tunneling of the tandem solar celllayer materials, including InGAP, GaAs and AlGaAs solar cell characteristics. The results showed that the conversion efficiency is about 100 times under the condenser conditions the best value, more than this ratio, along with the condenser times the rate of increase, the conversion efficiency of the contrary, followed by a decrease. The effect of temperature is simulated battery condenser in a number of kinds of temperature (27-400 ° C), ambient temperature may represent a variety of condenser. From the results can be seen with the rise in temperature and degree of different condenser conditions, fill factors and open circuit voltage under decreased while the short circuit current is no much change, ultimately resulting in conversion efficiency with the temperature level of the rise while the next decrease. Overall, the tunneling layer of AlGaAs is the best characteristics of the performance of materials under different temperature and condenser conditions.
摘要I
Abstract II
目錄III
圖目錄V
表目錄VI
第一章 緒論1
1.1 研究動機1
1.2 研究動機與方向 2
1.3 論文架構2
第二章 文獻回顧3
2.1 太陽電池基本原理3
2.2 III-V族材料簡介8
2.3 多接面太陽能電池與各層原理9
2.4 穿隧二極體之原理13
第三章 模擬軟體說明 15
3.1模擬軟體簡介15
3.2 InGaP/GaAs模擬之物理模型16
3.3 InGaP/GaAs模擬之物理模組17
第四章 結果與分析19
4.1 雙接面電池結構其子電池特性19
4.2 改變穿隧二極體材料之特性分析24
4.3 聚光與溫度變化之結果與探討30
第五章 結論37
參考文獻38
致謝41

【1】莊家琛, 太陽能工程-太陽電池篇, 全華出版社, 1997
【2】D. A. Neannen, 半導體元件物理與元件 滄海書局, 2010
【3】Spanggaard, H. and Krebs, F.C., “Solar Energy Mater Solar Cells“, Vol. 83, No. 125, 2004.Lillington, D., Cotal, H. and Ermer Spectrolab,.J.,.Inc,.“32.3% 2007.
【4】M. O. Watanabe and Y. Ohba, “Interface Properties for GaAs/InGaAlP Heterojunctions by the Capacitance-Voltage Profiling Technique,” Applied Physics Letters, vol. 50, pp. 906-908, 1987.
【5】R. B. Capaz, and B. Koiller, “Partial-Ordering Effects in InxGa1-xP,” Physical Review B, vol. 47, pp. 4044-4047, 1993.
【6】S. R. Kurtz, J. M. Olson, D. J. Friedman, J. F. Geisz, A. E. Kibbler, and K. A. Bertness, “Passivation of Interfaces in High-Efficiency Photovoltaic Devices,” Proceedings of Materials Research Society’s Spring Meeting, 1999.
【7】T. Takamoto, “InGaP/GaAs tandem solar cells,” in InP and Related Compounds - Materials, Applications, and Devices, edited by
M. O. Manasreh, Ch.16, pp. 787-837, Gordon and Breach Science Publishers, 2000.
【8】I. García, I. Rey-Stolle, B. Galiana, and C. Algora, “Analysis of Tellurium as n-Type Dopant in GaInP: Doping, Diffusion, Memory Effect and Surfactant Properties,” Journal of Crystal Growth, vol. 298, pp. 794-799, 2007.
【9】G. L. Snider, I.-H. Tan, and E. L. Hu, “Electron States in Mesa-Etched One-Dimensional Quantum Well Wires,” Journal of Applied Physics, vol. 68, pp. 2849-2853, 1990.
【10】I.-H. Tan, G. L. Snider, and E. L. Hu, “A Self-Consistent Solution of Schrödinger-Poisson Equations Using a Nonuniform Mesh,” Journal of Applied Physics, vol. 68, pp. 4071-4076, 1990.
【11】B. Mack, M. Hermle, S. Philipps, A.W. Bett, “Simulation of the tunneling current in heavily doped PN-junctions”, Presented at the 21st EuropeanPhotovoltaic Solar Energy Conference, September 4-8, Dresden,1DV.1.9Cells 85 (2005) 293–300 2006,
【12】Nell, M.E.; Barnett, A.M, “The spectral p-n junction model for tandem solar-cell design”, IEEE Trans. on electron devices, Vol. Ed-34, No. 2,February 1987.
【13】Marti A and Araujo GL, “Limiting efficiencies for photovoltaics solar conversion in multigap systems”, Solar Energy Materials and Solar Cells 43203-22 .2009
【14】M. F. Stuckings, and A. W. Blakers, “A study of shading and resistive loss from the fingers of encapsulated solar cells,” Solar Energy Materials & Solar Cells. 59: pp. 233-242 1999.
【15】M. Ladle Ristow, M. S. Kuryla, B. C. Chung, and L. D. Partain, “Cap Thickness Effect on Al0.37Ga0.63As and GaAs Diode Solar Cells,” IEEE Transactions on Electron Devices, 43: pp. 183-185. 1996
【16】L. Han, A. Fukui, N. Fuke, N. Koide, and R. Yamanaka, “High Efficiency of Dye-Sensitized Solar Cell and Module,” Proceedings of the 4th World Conference on Photovoltaic Energy Conversion, vol. 1, pp. 179-182, 2006.
【17】D. J. Friedman, S.R. Kurtz, K.E. Kibbler, J.M. Olson, Back surface ields for GaInP2 solar cells. In: Proceedings of the 22nd IEEE Photovoltaic Specialists Conference, vol.1, pp. 358–360. 1991.
【18】J. Zhao, A. Wang and M. A. Green, “24.5% Efficiency Silicon PERT Cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates,” Progress in Photovoltaics: Research and Applications, vol. 7, pp. 471-474, 1999.
【19】P. D. Demoulin, and M. S. Lundstrom, “Assessment of Design Approaches for High-efficiency GaAs Solar Cells,” IEEE. 0160-8317/88/0000-0497 1998.
【20】V. Swaminathan and A. T. Macrander, Materials Aspects of GaAs and InP Based Structures, Prentice-Hall, Inc., 1991, pp. 20−22.
【21】Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys., vol. 89, pp. 5815−5875, 2001.
【22】J. M. Olson, D. J. Friedman, and S. Kurtz, Handbook of photovoltaic science and engineering, John Wiley & Sons, England, , ch. 9, pp. 360−411. 2003.
【23】J. Nelson, The physics of solar cells, London: Imperial College Press, ch. 7, pp. 198−205. 2003.
【24】SILVACO International Inc, “ATLAS User’s Manual”, Santa Clara, CA, 2012
【25】J. Nelson, The physics of solar cells, London: Imperial College Press, ch. 9, pp. 270−272. 2003
【26】P. V. Zant, Microchip fabrication, New York: McGraw-Hill, pp. 431−432. 2000
【27】M. D. Archer, R. Hill, and A. Luque, Clean electricity from photovoltaics, London: Imperial College Press, , ch. 12, pp. 538−542. 2001.
【28】J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys., vol. 53, pp. R123−181, 1982.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top