跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/02 12:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張宗賢
研究生(外文):Tsung-Hsien Chang
論文名稱:利用真空吸附染料技術提升染料敏化太陽能電池之光電轉換效率
論文名稱(外文):Enhancement of Photoelectric Conversion Efficiency for Dye Sensitized Solar Cells with the Dye-Absorption Technique in Vaccum Environment
指導教授:陳兆南陳兆南引用關係黃俊杰黃俊杰引用關係
指導教授(外文):Chao-Nan ChenJung-Jie Huang
口試委員:陳永欽王右武黃俊杰陳兆南
口試委員(外文):Yeong-Chin ChenYu-Wu WangJung-Jie HuangChao-Nan Chen
口試日期:2012-07-23
學位類別:碩士
校院名稱:亞洲大學
系所名稱:光電與通訊學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:94
中文關鍵詞:染料敏化太陽能電池二氧化鈦真空吸附染料N719
外文關鍵詞:Dye-sensitized solar cellsTiO2Vacuum adsorption of dyN719
相關次數:
  • 被引用被引用:0
  • 點閱點閱:692
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討染料敏化太陽能電池(Dye-Sensitized Solar Cells, DSSCs) 薄膜電極之製備技術及效率改善。首先使用市售奈米級二氧化鈦粒子(P25),並利用溶膠-凝膠法(Sol-gel) 調配去離子水與無水乙醇溶液之不同TiO2溶膠。接著利用旋轉塗佈法(Spin-coating Method) ,塗佈不同厚度之溶膠於ITO導電玻璃上,製作成工作電極。
本實驗中,使用真空吸附染料技術將工作電極浸置於N719染料中,取代一般在非真空條件下浸泡染料;最後與白金對電極組裝成電池元件,再經由AM1.5、100 mW/cm2 標準光源模擬器測量電池的I-V特性及效能影響。
藉由UV-Vis、Raman、XPS與太陽能光電轉換效率結果驗證,本研究使用真空吸附染料技術確實有較佳的染料吸附量,且染料分子並非僅物理吸附,而是具有化學鍵結的化學性吸附。在效率部分,使用真空吸附染料技術的染料敏化太陽能電池之光電轉換效率最佳可達到4.57 %,相較於非真空提升了1.17 倍。

This study focused on the preparation technology and efficiency improvements of Photoelectrode in dye-sensitized solar cells (DSSCs). First use of commercially nanoscale titanium dioxide particles (P25), and deployment of deionized water and ethanol solution of TiO2 sol sol - gel method. Followed by spin-coating method, coated with different thickness on ITO conductive glass, made into a working electrode.
This experiment, use of vacuum adsorption of dye working electrode immersed in the N719 dye to replace the generally soaked in the dye in the non-vacuum conditions. Finally, with the platinum electrode assembly into the DSSCs components, and then by AM1.5, 100 mW/cm2 standard light source simulator to measure the IV characteristics and performance impact.
With UV-Vis, Raman, the XPS and photovoltaic cell conversion efficiency results verified in this research use the technology of vacuum adsorption of dye does have a better dye loading, dye molecules are not only physical adsorption, but the chemical bonding of chemical adsorption. Part of the efficiency, the best conversion efficiency of dye sensitized solar cell using dye technology of vacuum adsorption of 4.57%, compared to non-vacuum increase 1.17 times.

中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池種類 3
1.3 染料敏化太陽能電池 5
1.4 研究動機與目的 6
第二章 基礎理論與文獻回顧 7
2.1 染料敏化太陽能電池發展背景與演進 7
2.2 染料敏化太陽能電池的組成結構 12
2.3 染料敏化太陽能電池的工作原理及特性 14
2.3.1 染料敏化太陽能電池之逆反應 17
2.4 二氧化鈦簡介 19
2.4.1 二氧化鈦光反應原理 22
2.4.2 二氧化鈦的製備方法 24
2.4.3 溶膠-凝膠法之反應機制 25
2.4.4 溶劑對溶膠-凝膠之影響 27
2.4.5 燒結溫度 27
2.5 光敏染料 29
2.6 電解質 36
2.6.1 液態電解質 36
2.6.2 膠態電解質 38
2.7 白金對電極 41
2.8 太陽能電池電流-電壓輸出特性 44
第三章 實驗方法與量測 47
3.1 實驗藥品與儀器 47
3.1.1 實驗藥品 47
3.1.2 實驗儀器 48
3.2 實驗規劃 49
3.3染料敏化太陽能電池製備 50
3.3.1 工作電極製備 50
3.3.2 染料製備 51
3.3.3電解質製備 52
3.3.4 白金對電極製備 52
3.3.5 元件封裝 52
3.4 真空吸附染料技術 55
3.5 分析儀器應用原理 56
3.5.1 場發射掃描式電子顯微鏡 56
3.5.2 X光繞射儀 57
3.5.3 紫外光-可見光光譜儀 58
3.5.4 拉曼光譜分析 59
3.5.5 X射線光電子能譜儀 60
3.5.6 太陽能電池 I-V 曲線量測儀器 61
第四章 結果與討論 62
4.1 二氧化鈦薄膜電極之SEM 分析 62
4.2 二氧化鈦薄膜電極之XRD 分析 66
4.3 二氧化鈦薄膜電極之UV-Vis 分析 68
4.4 二氧化鈦薄膜電極之Raman 分析 70
4.5 二氧化鈦薄膜電極之XPS 分析 73
4.6 染料敏化太陽能電池元件之效率量測 76
4.7 真空吸附染料技術對染料敏化太陽能電池之影響 81
第五章 結論 82
參考文獻 84
致謝 94

[1] T. L. Chu, S. Chu, J. Britt, G. Chen, C. Ferekides, N. Schultz, C.Wang and C. Wu, Proc. 11th EC Photovoltaic Solar Energy Conf., 1993, pp. 988.
[2] Frank Hurd and Robert Livingston, “The quantum yields of some dye-sensitized photooxidations”, J. Phys. Chem. 1940(44) 865-873.
[3] S. Chaberek, A. Shepp and R. J. Allen, “Dye-Sensitized Photopolymerization Processes. I.” J. Phys. Chem. 1965(69) 641-647.
[4] S. Chaberek, A. Shepp and R. J. Allen, “Dye-Sensitized Photopolymerization Processes. II.” J. Phys. Chem. 1965(69) 647-656.
[5] S. Chaberek, A. Shepp and R. J. Allen, “Dye-Sensitized Photopolymerization Processes. III.” J. Phys. Chem. 1965(69) 2834-2841.
[6] Kearns et al., “Evidence for the participation of 1.SIGMA.g+ and 1.DELTA.g oxygen in dye-sensitized photooxygenation reactions. I” J. Am. Chem. Soc. 1967(89) 5455-5456.
[7] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide/aqueous electrolyte/platinum photocell”, Nature 1976 (261) 402.
[8] M. Grätzel, and B. O’Regan, “A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films”, Nature, 1991, vol. 353, pp.737-740.
[9] M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorg. Chem., 2005, 44 (20), pp 6841–6851.
[10] Zhong-Sheng Wang, Masatoshi Yanagida, Kazuhiro Sayama, and Hideki Sugihara “Electronic-Insulating Coating of CaCO3 on TiO2 Electrode in Dye-Sensitized Solar Cells: Improvement of Electron Lifetime and Efficiency”, Chem. Mater. 2006, 18(12), 2912-2916.
[11] Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW, Yeh CY, Zakeeruddin SM, Grätzel M.,” Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency”, Science, 2011, 334, 629.
[12] K. Hara, Y. Dan-Oh, C. Kasada, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, “Effect of Additives on the Photovoltaic Performance of Coumarin-Dye- Sensitized Nanocrystalline TiO2 Solar Cells”, Langmuir, 2004, vol. 20, pp.4205.
[13] K. Hara, T. Nishikawa, M. Kurashige, H. Kawauchi, T. Kashima, K. Sayama, K. Alka, and H. Arakawa, “Influence of Electrolyte on The Photovoltaic Performance of A Dye-Sensitized TiO2 Solar Cell Based on a Ru(II) Terpyridyl Complex Photosensitizer”, Sol. Energy Mater., 2005, Sol. Cells, vol. 85, pp.21.
[14] A. Furube, R. Katoh, K. Hara, T. Sato, S. Murata, H. Arakawa, and M. Tachiya, “Lithium Ion Effect on Electron Injection from a Photoexcited Coumarin Derivative into a TiO2 Nanocrystalline Film Investigated by Visible-to- IR Ultrafast Spectroscopy”, J. Phys. Chem. B, 2005, vol. 109, pp.16406-16414.
[15] G. Redmond and D. Fitzmaurice, “Spectroscopic Determination of Elatband Potentials for Polycrystalline titania Electrodes in Nonaqueous Solvents”, J. Phys. Chem., 1993, vol. 97, pp.1426.
[16] G. Boschloo and D. Fitzmaurice, “Electron Accumulation in Nanostructured TiO2 (Anatase) Electrodes”, J. Phys. Chem. B, 1999, vol. 103, pp.7860.
[17] C. A. Kelly, F. Farzad, D. W. Thompson, J. M. Stipkala, G. J. Meyer, “Cation-Controlled Interfacial Charge Injection in Sensitized Nanocrystalline TiO2”, Langmuir, 1999, vol. 15, pp.7047.
[18] S. Kambe, S. Nakade, T. Kitamura, Y. Wada, S. Yanagida, “Influence of the Electrolytes on Electron Transport in Mesoporous TiO2-Electrolyte Systems”, J. Phys. Chem. B, 2002, vol. 106, pp.2967.
[19] S. A. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Grätzel, D. R. Klug, and J.R. Durrant, “Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films”, J. Phys. Chem. B, 2000, vol.104, pp.538.
[20] J. Bisquert, “Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer”, J. Phys. Chem. B, 2002, vol. 106, pp.325-333.
[21] A. N. M. Green, E. Palomares, S. A. Haque, et al, “Charge Transport Versus Recombination in Dye-Sensitized Solar Cells Employing Nanocrystalline TiO2 and SnO2 Films”, J. Phys. Chem. B, 2005, vol. 109, pp.12525-12533.
[22] F. F. Santiago, G. G. Belmonte, J. Bisquert, et al, “Decoupling of Transport, Charge Storge, and Interfacial Charge Transfer in the Nanocrystalline TiO2/electrolyte System by Impedance Methods”, J. Phys. Chem. B, 2002, vol. 106, pp.334-339.
[23] S. Y. Huang, G. Schlichthorl, A. J. Nozik, et al, “Charge Recombination in Dye-sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem. B, 1997, vol. 101,pp.2576-2582.
[24] A. Hagfeldt and M. Grätzel, “Light-Induced Redox Reactions in Nanocrystalline Systems”, Chem Rev., 1995, vol. 95, pp.49-68.
[25] S. Spiekermann, G. Smestad, J. Kowalik, L.M. Tolbert, M Gratzel, “Poly(4-undcy1-2,2’-bithiophene) as a hole conductor in solid state dyesensitized titanium dioxide Solar Cells”, Synthetic Metals, 2001, Vol. 121, 1603-1604.
[26] A. Hagfeldt, M. Gratzel, “Molecular Photovoltaics”, ACC. Chem., 2000, Res. 33 269.
[27] A. L. Linsebigler, G. Lu and J. T. Yates, “Photocatalysis on TiOn Surfaces:Principles, Mechanisms, and Selected Results”, Chem. Rev., 1995, 95, 735.
[28] K. M. Reddy, S. V. Manorama, A. R. Reddy, “Bandgap studies on anatase titanium dioxide Nan particles”, Mater. Chem. and Phy., 2002, 78, 239–245.
[29] K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras, “Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity”, Langmuir., 2004, 20, 2900–2907.
[30] 陳富亮,最新奈米光觸媒應用技術第四章,p53-p54,普林斯頓國際股份有限公司,台北,2003。
[31] M.Grätzel, “Photoelectrochemical cells”, Nature, 2001, 414,338-344.
[32] 史宗淮(民85)。微粉製程技術簡介。化工,42,28-35。
[33] S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata,Y. Wada, H. Mori and S. Yanagida, “Dependence of TiO2 Nanoparticle Preparation Methods and Temperature on the Efficiency of Dye-Sensitized Solar Cells,” J. Phys. Chem. B, 2002, 106, 10004.
[34] 朱奕融(民93)。奈米TiO2粒子應用於染料敏化太陽能電池之研究。私立南台科技大學電機工程系碩士論文,台南縣。
[35] 張芳碩(民92)。染料敏化二氧化鈦光電化學太陽能電池之研究。國立台灣大學化學工程系碩士論文,台北市。
[36] 彭懷夫(民93)。中孔性二氧化鈦薄膜於染料敏化太陽能電池之應用。國立東華大學化學系碩士論文,花蓮縣。
[37] 劉茂煌,奈米光電池,工業材料雜誌 2003,203 期,93.
[38] D. Cahen , G. Hodes, M. Grätzel, J. F. Guillemoles and I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem.B, 2000, 104, 2053.
[39] A. Zaban, S. Ferrere, B. A. Gregg, “Relative Energetics at the Semiconductor/Sensitizing Dye/Electrolyte Interface”, J. Phys. Chem. B, 1998, 102, 52.
[40] Md.K.Nazeeruddin, S.M.Zakeeruddin, R.Humphry-Baker, M.Jirousek﹔P.Liska, N.Vlachopoulos, V.Shklover, , M.Gratzel, “Acid−Base Equilibria of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania”, Inorg. Chem. 1999, 38, 6298–6305.
[41] S. Kim, R. Finnie. L. James, “Vibrational Spectroscopic Study of the Coordination of (2,2'-Bipyridyl-4, 4'-dicarboxylic acid) ruthenium(II) Complexes to the Surface of Nanocrystalline Titania,” Langmuir., 1998, 14, 2744-2749.
[42] C. Bauer, G. Boschloo, E. Mukhtar, and A. Hagfeldt, “Interfacial Electron-Transfer Dynamics in Ru(tcterpy)(NCS)3-Sensitized TiO2 Nanocrystalline Solar Cells”, J. Phys. Chem. B, 2002, 106, 12693-12704.
[43] Argazzi, R.; Bignozzi, C.A.; Heimer, T.A.; Castellano, F.N.; Meyer, “Enhanced Spectral Sensitivity from Ru(II) Polypyridyl Photovoltaic Devices”, Inorg. Chem. 1994, 33, 5741-5749.
[44] M. K. Nazeeruddin, M. Amirnasr, P. Comte, J. R. Mackay, A. J. McQuillan, R. Houriet, and M. Grtzel, “Adsorption studies of counterions carried by the sensitizer cis-dithiocyanato(2,2 '-bipyridyl-4,4 '-dicarboxylate) ruthenium(II) on nanocrystaline TiO2 films”, Langmuir., 2000, 16 (22), 8525-8528.
[45] Kei Murakoshi, Gentaro Kano, Yuji Wada, Shozo Yanagida, “Importance of bindingstates between photosensitizingmolecules and the TiO2 surface for efficiency in adye-sensitizedsolar cell”, J.Electroanal. Chem. 1995,396,27–34.
[46] Sayama K., Sugihara H., Arakawa H., Chem. Mater. 1998, 10, 3825–3832.
[47] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M.Grätzel, J. Phys. Chem. B, 2003, 107, 8981–8987.
[48] C. Klein, Md. K. Nazeeruddin, D. Di Censo, P. Liska and M.Grätzel, Inorg. Chem., 2004, 43, 4216–4226.
[49] S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D.R. Klug and J. R. Durrant, “Charge Separation versus Recombinationin Dye-Sensitized Nanocrystalline Solar Cells: the Minimization of Kinetic Redundancy,” J. Am. Chem., 2005, Soc. 127, 3456.
[50] Y. REN, Z. ZHANG, E. GAO, S. FANG, S. CAI, “A dye-sensitizednanoporous TiO2 photoelectrochemical cell with novel gel network polymer electrolyte,” Journal of Applied Electrochemistry, 2001, 31, 445.
[51] A. F. Nogueira, J. R. Durrant and M. A. D. Paoli, “Dye-SensitizedNanocrystalline Solar Cells Employing a Polymer Electrolyte,”Adv. Mater., 2001,13, 826.
[52] F. Cao, G. Oskam and P. C. Searson, “A Solid State,Dye SensitizedPhotoelectrochemical Cell,” J. Phys. Chem., 1995, 99, 17071.
[53] K. Tennakone, G. K. R. Senadeera, V. P. S. Perera, I. R. M. Kottegodaand L. A. A. De Silva, “Dye-Sensitized Photoelectrochemical Cells Based on Porous SnO2/ZnO Composite and TiO2 Films with a Polymer Electrolyte,” Chem. Mater., 1999, 11, 2474.
[54] M. A. K. L. Dissanayake, L. R. A. K. Bandara, R. S. P. Bokalawala, P. A. R. D. Jayathilaka, O. A. Ileperuma and S. Somasundaram, “A novel gel polymer electrolyte based on polyacrylonitrile(PAN) and it’s application in a solar cell”, Materials Research Bulletin., 2002, 37, 867.
[55] S. S. Sekhon, Deepa, S. A. Agnihotry, “Solvent effect on gel electrolytes containing lithium salts”, Solid State Ionics, 2000, 136-137, 1189.
[56] E. Stathatos, P. Lianos, U. Lavrencic-Stangar and B. Orel, “A High-Performance Solid-State Dye-Sensitized Photoelectrochemical Cell Employing a Nanocomposite Gel Electrolyte Made by the Sol-Gel Route”, Adv. Mater., 2002, 14, 354.
[57] M. Matsumoto, H. Miyazaki, K. Matsuhiro, Y. Kumashiro and Y. Takaoka,“A dye sensitized TiO2 photoelectrochemical cell constructed withpolymer solid electrolyte”, Solid State Ionics, 1996, 89, 263-267.
[58] H. Kataoka, Y. Saito, Y. Uetani, S. Murata and K. Kii, “Interactive Effect of the Polymer on Carrier Migration Nature in the Chemically Cross-Linked Ploymer Gel Electrolyte Composed of Poly(ethylene glycol)Dimethacrylate”, J. Phys. Chem. B, 2002, 106, 12084.
[59] Fang, X., Ma, T., Guan, G., Akiyama, M., and Abe, E.: “Performances characteristicsof dye-sensitized solar cells based on counter electrodes with Pt films of differentthickness”, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164,(1-3), pp. 179-182.
[60] Fang, X., Ma, T., Guan, G., Akiyama, M., Kida, T., and Abe, E.: “Effect of thethickness of the Pt film coated on a counter electrode on the performance of adye-sensitized solar cell”, Journal of Electroanalytical Chemistry, 2004, 570, (2), pp.257-263.
[61] Papageorgiou, N.: “Counter-electrode function in nanocrystalline photoelectrochemical cell configurations”, Coordination Chemistry Reviews, 2004,248, (13-14), pp. 1421-1446.
[62] L. Dloczik, “ Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells:Characterization by Intensity-Modulated Photocurrent Spectroscopy”, J. Phys. Chem. B, 1997, 101, 10281.
[63] S. Wang,Y. Li, C. Du, Z. Shi, S. Xiao, D. Zhu, E. Gao and S. Cai, “Dye sensitization of nanocrystalline TiO2 by perylene derivatives”, SyntheticMetals, 2002, 128, 299.
[64] 郭正鏞(民93)。應用於染料敏化太陽能電池之二氧化鈦薄膜與粉末製程及其特性研究。私立南台科技大學機械工程系碩士論文,台南縣。
[65] Umapathy, S., Cartner, A.M., Parker, A.W., and Hester, R.E.: ‘Time-resolved resonance Raman spectroscopic studies of the photosensitization of colloidal titanium dioxide’, Journal of Physical Chemistry, 1990, 94, (26), pp. 8880-8885.
[66] Jang, S.R., Vittal, R., Lee, J., Jeong, N., and Kim, K.J.: ‘Linkage of N3 dye to N3 dye on nanocrystalline TiO2 through trans-1,2-bis(4-pyridyl)ethylene for enhancement of photocurrent of dye-sensitized solar cells’, Chemical Communications, 2006, (1), pp. 103-105.
[67] Zhang, D., Downing, J.A., Knorr, F.J., and McHale, J.L.: ‘Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion’, Journal of Physical Chemistry B, 2006, 110, (43), pp. 21890-21898.
[68] Shoute, L.C.T., and Loppnow, G.R.: “Excited-State Metal-to-Ligand Charge Transfer Dynamics of a Ruthenium(II) Dye in Solution and Adsorbed on TiO2 Nanoparticles from Resonance Raman Spectroscopy”, Journal of the American Chemical Society, 2003, 125, (50), pp. 15636-15646.
[69] Hugot-Le Goff, A., Joiret, S., and Falaras, P.: ‘Raman Resonance Effect in a Monolayer of Polypyridyl Ruthenium(II) Complex Adsorbed on Nanocrystalline TiO2 via Phosphonated Terpyridyl Ligands’, Journal of Physical Chemistry B, 1999, 103, (44), pp. 9569-9575.
[70] Quagliano, L.G., Jusserand, B., and Orani, D.: ‘SERS Spectroscopy to StudyAdsorbates on Semiconductor Surfaces’, Journal of Raman Spectroscopy, 1998, 29,(8), pp. 720-724.
[71] C. P. Len, L.Kador, B. Peng, M. Thelakkat, “Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV−Vis, Raman, and FTIR spectroscopies”, J. Phys. Chem. B, 2006, 110, 8723.
[72] Haiqiang Lu, Jianghong Zhao, Li Li, Liming Gong, Jianfeng Zheng, Lexi Zhang, Zhijian Wang, Jian Zhang and Zhenping Zhu, “Selective oxidation of sacrificial ethanol over TiO2-based photocatalysts during water splitting”, Energy Environ. Science., 2011, 4 3384.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top