跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 01:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡崇平
研究生(外文):Tasi, Chorng pyng
論文名稱:透明導電P型二氧化銅鉻薄膜之製備與光電特性研究
論文名稱(外文):Synthesis And Optoelectronic Characteristics Of Transparent Conductive P-type CuCrO2 Thin Films
指導教授:游瑞松
指導教授(外文):Yu, Rueisung
口試委員:游瑞松歐珍方陳弘穎
口試委員(外文):Yu, RueisungOu, ChengfangChen, Hongying
口試日期:2012-07-20
學位類別:碩士
校院名稱:亞洲大學
系所名稱:光電與通訊學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:66
中文關鍵詞:二氧化銅鉻透明導電氧化物結構光電特性
外文關鍵詞:CuCrO2Transparent conductive oxideStructureOptoelectronic properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1024
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究分成二階段,第一階段使用磁控濺鍍法製備Cu-Cr-O薄膜,之後再以氬氣氣氛作500~700℃退火處理1小時,研究顯示初始濺鍍薄膜為非晶質,薄膜經由500 ℃退火處理後形成CuO及CuCr2O4多相結構,600℃之後形成delafossite-CuCrO2結構,退火溫度由600℃增加700℃,將使得CuCrO2的晶粒尺寸增加,晶粒成長過程中將造成晶界面積以及點缺陷減少,在減少晶界散射效應下,載子移動率由0.487增加至0.648 (cm2/Vs),電洞載子來源的點缺陷減少將使得載子濃度由3.16×1017減少至2.05×1017 (cm-3)。兩者CuCrO2薄膜相互比較之下,退火600℃的CuCrO2薄膜具有較佳的導電性質,其電阻值為35.46 Ωcm,直接能隙值為3.08 eV,在800 nm及550 nm 的可見光波長分別約有72%及550 nm透光率。
第二階段研究以不同薄膜製程參數氧氬比(O2/(O2+Ar))為40 %、50 %、60 %及70 %沉積Cu-Cr-O薄膜。濺鍍後於氬氣氣氛下進行退火處理600℃恆溫4小時。由分析顯示當製程參數氧氬比為40 %及50 %之薄膜,經由退火處理後薄膜為CuO及CuCrO2之複合相結構,氧氬比高於60 %所製備之薄膜為單一相結構CuCrO2,掃描式電子顯微鏡證實當氧氬比高於60 %,薄膜厚度有明顯的減少由140 nm改變至106 nm,這是因為較高的氧含量在銅鉻靶材形成氧化物造成靶材濺鍍率下降而調整濺鍍原子成分,致使,在薄膜形成單一相結構CuCrO2,透光率明顯提升,在550 nm 波長約有68 %的透光率,當形成單一相CuCrO2薄膜直接能隙值分別為3.15 eV及3.16 eV,霍爾效應量測顯示形成單一相結構後載子濃度增加造成電阻值降低,電阻值分別為2.35及2.61 Ωcm,遷移率分別為0.19及0.18 cm2/Vs,載子濃度分別為1.2×1019及1.4×1019 cm-3正值霍爾係數證實CuCrO2薄膜之主要載子為電洞(h+)。

This study was conducted in two stages. In the first stage, Cu-Cr-O films were prepared using magnetron sputtering deposition and then annealed for one hour under controlled argon atmosphere at the temperature of 500, 600, and 700℃. The as-deposited film was amorphous. Through annealing at 500℃, the film formed a structure as a combination of CuO and CuCr2O4; through annealing at 600°C or higher, the film turned to a delafossite-CuCrO2 structure. As the annealing temperature rose to 700℃, the average grain size in CuCrO2 film increased which leads to the reduction of grain boundary areas and the number of point defects. This reduction increased the carrier mobility from 0.487 to 0.648 cm2/Vs. Also, the reduction of point defects, the origin of hole carriers, caused the carrier concentration to decrease from 3.16×1017 to 2.05×1017 cm-3. The 600℃-annealed film had the lower resistivity of 35.46 Ωcm, with a direct energy band gap value of 3.08 eV and a light transmittance rate of 72% at 800 nm visible light.
In the second stage, different deposition parameters of the O2/(O2+Ar) ratio were employed to deposit the Cu-Cr-O films, including 40, 50, 60, and 70 %. After sputtering deposition, the film was annealed under argon atmosphere at 600℃ for 4 hours. The films were a composite-phase structure of CuO and CuCrO2 that deposited at the O2/(O2+Ar) ratio of 40 and 50 %. The film was a single-phase CuCrO2 which deposition parameters corresponding to the O2/(O2+Ar) ratio equal to and higher than 60 %. FESEM demonstrated that the O2/(O2+Ar) ratio higher than 60 % significantly decreased the thickness of the film to 106 nm. This could be explained by that the relatively high concentration of oxygen led to formation of oxide on the CuCr target surface, and in turn decreased the sputtering yield of the target. By adjusting the composition of the sputtered atoms, the film was formed as a single-phase CuCrO2 structure. The single-phase CuCrO2 film had the transmission of 68 % at 550 nm. The single-phase CuCrO2 films had direct energy gap values of 3.15 and 3.16 eV, respectively. Hall-effect measurement revealed the increased carrier concentration in the single-phase structure that lowered the resistivity values of 2.35 and 2.61 Ωcm, respectively. The carrier mobilities were was 0.19 and 0.18 cm2/Vs, respectively. The carrier concentrations were 1.2×1019 and 1.4×1019 cm-3, respectively. The positive Hall coefficients indicated that the main electricity carriers in CuCrO2 films were holes (h+).

目錄
摘要...............................................................................................i
Abstract.........................................................................................iii
目錄................................................................................................v
圖目錄............................................................................................viii
表目錄...............................................................................................x
第一章 緒論...........................................................................................1
 1.1 前言...........................................................................................1
 1.2研究動機與目的...................................................................................3
第二章 文獻回顧........................................................................................4
 2.1透明導電氧化物....................................................................................4
 2.2 CuCrO2之結構....................................................................................5
 2.3濺鍍法...........................................................................................6
 2.4無摻雜之CuCrO2薄膜文獻回顧.........................................................................9
 2.5摻雜之CuCrO2薄膜文獻回顧..........................................................................10
第三章 實驗方法.......................................................................................11
 3.1 實驗方法.......................................................................................11
 3.2 實驗流程.......................................................................................12
 3.3 基板清洗方式與步驟..............................................................................13
 3.4 薄膜製備.......................................................................................14
 3.5氣氛退火處理.....................................................................................16
第四章 分析儀器.......................................................................................18
 4.1 X光繞射分析儀..................................................................................18
 4.2場發射穿透式電子顯微鏡............................................................................20
 4.3場發射掃描式電子顯微鏡............................................................................22
 4.4紫外/可見光光譜儀................................................................................23
 4.5霍爾效應量測儀...................................................................................24
第五章 結果與討論.....................................................................................25
 5.1第一階段薄膜退火處理之討論........................................................................25
  5.1.1薄膜外觀分析.................................................................................25
  5.1.2 X光繞射分析................................................................................26
  5.1.3場發射穿透式電子顯微鏡之薄膜結構分析............................................................31
  5.1.4薄膜透光性量測...............................................................................36
  5.1.5薄膜光學能隙分析.............................................................................39
  5.1.6薄膜電學性質量測分析..........................................................................42
 5.2第二階段薄膜氧氬比參數之討論.......................................................................44
  5.2.1 X光繞射分析.................................................................................44
  5.2.2 場發射穿透式電子顯微鏡結構分析................................................................47
  5.2.3掃描式電子顯微鏡分析..........................................................................50
  5.2.4薄膜透光性量測分析...........................................................................52
  5.2.5薄膜光學能隙分析.............................................................................54
  5.2.6薄膜電學性質量測分析..........................................................................57
第六章 結論...........................................................................................59
參考文獻..............................................................................................62
致謝.................................................................................................66

[1] K. Nomura, N. Shibata, and M. Maeda, J. Electrochem. Soc., 149 (2002) F76.
[2] H. Matsui, H. Saeki, H. Tabata, and T. Kawai, J. Electrochem. Soc., 150 (2003) G508.
[3] N. D. Popovich, S. S.Wong, S. Ufer, V. Sakhrani, and D. Paine, J. Electrochem. Soc., 150 (2003) H255.
[4] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature, 389 (1997) 939.
[5] K. Ueda, T. Hase, H. Kawazoe, H. Hosono, H. Ohta, M. Orita, and M. Hirano, J. Appl. Phys., 89 (2001) 1790.
[6] B. J. Ingram, T. O. Mason, R. Asahi, K. T. Park, and A. J. Freeman, Phys. Rev., B64 (2001) 155114.
[7] K. Koumoto, H. Koduka, and W. S. Seo, J. Mater. Chem., 11 (2001) 251.
[8] R. Nagarajan, A. D. Draeseke, A. W. Sleight, and J. Tate, J. Appl. Phys., 89 (2001) 8022.
[9] D. Li, X. Fang, Z. Deng, S. Zhou, R. Tao, W. Dong, T. Wang, Y. Zhao, G. Meng, and X. Zhu, J. Phys. D: Appl. Phys., 40 (2007) 4910.
[10] H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, Thin Solid Films, 445 (2003) 263.
[11] K. M. Lin, and P. Tsai, Mater. Sci. Eng., B139 (2007) 81.
[12] L. Y. Lin, and D. E. Kim, Thin Solid Films, 517 (2009) 1690.
[13] H. Sato, T. Minami, S. Takata, T. Miyata, and M. Ishii, Thin Solid Films, 236 (1993) 14.
[14] C. Agashe, O. Kluth, G. Schöpe, H. Siekmann, J. Hüpkes, and B. Rech, Thin Solid Films, 422 (2003) 167.
[15] J. Müller, B. Rech, J. Springer, and M. Vanecek , Sol. Energy, 77 (2004) 917.
[16] G. Sberveglieri, S. Groppelli, P. Nelli, A. Tintinelli, and G. Giunta, Sens. Actuators, B24 (1995) 588.
[17] D. M. Mattox, “Handbook of Physical Vapor Deposition (PVD) Processing”, (1980).
[18] D. Noguchi, Y. Kawamata, and T. Nagatomo, J. Appl. Phys., 43 (2004) 1581.
[19] 吳權吉,2005,以反應性磁控濺鍍法製備矽化物氣體阻障層之研究,私立中原大學化學工程系研究所,碩士論文。
[20] W. T. Lim, P. W. Sadik, D. P. Norton, S. J. Pearton, Y. L. Wang, and F. Ren, Electrochem. Solid-State Lett., 10 (2007) H178.
[21] Z. Deng, X. Fang, D. Li, S. Zhou, R. Tao, W. Dong, T. Wang, G. Meng, and X. Zhu, J. Alloys Compd., 484 (2009) 619.
[22] T. Minami, H. Tanaka, T. Shimakawa, and T. Miyata, Proc. SPIE, 5274 (2004) 399.
[23] S. Götzendörfer, C. Polenzky, S. Ulrich, and P. Löbmann, Thin Solid Films, 518 (2009) 1153.
[24] G. Dong, M. Zhang, X. Zhou, H. Yan, C. Tian, and Y. Ren, Appl. Surf. Sci., 256 (2010) 4121.
[25] S. Mahapatra, and S. A. Shivashankar, Chem. Vap. Deposition, 9 (2003) 238.
[26] D. Li, X. Fang, A. Zhao, Z. Deng, W. Dong, and R. Tao, Vacuum, 84 (2010) 851.
[27] S. Y. Zheng, G. S. Jiang, J. R. Su, and C. F. Zhu, Mater. Lett., 60 (2006) 3871.
[28] Y. Wang, Y. Gu, T. Wang, and W. Shi, J. Alloys Compd., 509 (2011) 5897.
[29] J. Wang, P. Zheng, D. Li, Z. Deng, W. Dong, R. Tao, and X. Fang, J. Alloys Compd., 509 (2011) 5715.
[30] F. Lin, W. Shi, and A. Liu, J. Alloys Compd., 529 (2012) 21.
[31] Y. F. Wang, Y. J. Gu, T. Wang, and W. Z. Shi, J. Sol-Gel Sci. Technol., 59 (2011) 222.
[32] S. Götzendörfer, and R. Bywalez, J. Sol-Gel Sci. Technol., 52 (2009) 113.
[33] K. Tonooka, and N. Kikuchi, Thin Solid Films, 515 (2006) 2415.
[34] T. W. Chiu, K. Tonooka, and N. Kikuchi, Thin Solid Films, 516 (2008) 5941.
[35] P. W. Sadik, M. Ivill, V. Cracium, and D. P. Norton, Thin Solid Films, 517 (2009) 3211.
[36] A. C. Rastogi, S. H. Lim, and S. B. Desu, J. Appl. Phys., 104 (2008) 023712.
[37] 蔡政男、陳國昭、林燈河、朱達勇、谷天心、徐植蔚、鄭宜男,“普通物理學”,歐亞書局,(2010)。
[38] R. S. Yu, C. J. Huang, R. H. Huang, C. H. Sun and F. S. Shieu, Appl. Surf. Sci., 257 (2011) 6073.
[39] 游志樸,“半導體材料”,新文京出版社,(2003)。
[40] 鄞暉訓,2011,CuAlO2光電半導體薄膜結構及特性研究,私立亞洲大學光電與通訊學系研究所,碩士論文。
[41] R. S. Yu, C. J. Lu, D. C. Tasi, S. C. Liang, and F. S. Shieu, J. Electrochem. Soc., 145 (2007) H838.
[42] 吳孟奇、洪勝富、連振炘、龔正、吳忠義,“半導體元件”,東華書局,(2007 )。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊