跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 20:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翟悅清
研究生(外文):Jai, Yueh-Ching
論文名稱:考量節稅之全球供應鏈網絡生產規劃模式 -以記憶體模組產業為例
論文名稱(外文):A tax saving based global supply network production planning model : a case in memory module industry
指導教授:王立志王立志引用關係
指導教授(外文):Wang, Li-Chih
口試委員:袁明鑑鄭辰仰陳盈彥陳子立
口試委員(外文):Yuan, MingjisnCheng, ChenYangChen, YinYannChen, Tzu-Li
口試日期:2012-06-07
學位類別:碩士
校院名稱:東海大學
系所名稱:工業工程與經營資訊學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:96
中文關鍵詞:全球網絡生產規劃訂單滿足節稅模式記憶體模組產業線性規劃
外文關鍵詞:tax savingsorder allocationsupply chain planninglinear programmingmemory module industry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:631
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
在全球以及多階多廠區的生產環境之下,生產規劃比單廠區更加複雜與困難,全球企業之供應鏈通常包含多個製造廠與多個配銷中心,為了滿足下游顧客的多種類需求訂單,規劃人員不只需要決定製造廠的訂單分配或決定由哪一個配銷中心出貨。生產規劃時,除了一般的生產成本、庫存成本、運輸成本以及缺貨成本等等之外,須同時將全球生產製造及運輸之稅務相關成本納入,以因應現今國際分工之環境。還需考量供應鏈網絡限制,例如: 物料替代關係、原物料調撥、製造廠直接出貨給顧客、產能限制、運輸與生產前置時間。但過去的文獻中,甚少在探討生產規劃時將將稅務相關成本納入,且未曾套用於實際產業案例中,因此本研究使用線性規劃模式發展一個以成本極小化為目標的考量節稅之全球供應鏈網絡生產規劃模式,並以記憶體模組產業為案例,以期產生每週之生產計劃與運輸計畫,供規劃人員進行生產規劃時之參考依據。最後,經由實驗得知本模式之實用性,並進行敏感度分析,最後以企業實際資料作為案例驗證的實證。
The global supply network involves multiple manufacturing sites and multiple distribution centers of tax areas and international logistics zones. We present an linear programming model to produce a tax saving flexible supply net work planning (FSNP) model, determines the order allocation among multiple sites (includes manufacturing sites and distribution centers) and the procedure degree of each distribution center, for maximizing after-tax profit in the global supply network. In the numerical evaluation and results, we demonstrate the FSNP model is effective and analyze the impact of tax savings in order allocation model. A memory module industry case is selected to illustrate the effectiveness of the FSNP model.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究步驟與方法 4
第二章 文獻探討 5
2.1 供應鏈網絡生產規劃 5
2.2供應鏈網絡節稅生產規劃 8
2.3 記憶體模組產業介紹 11
第三章 供應鏈網絡生產規劃模式 13
3.1 問題描述 13
3.2一般型供應鏈網絡之訂單分配模式說明 16
3.2.1 假設條件 16
3.2.2 已知資訊 16
3.2.3符號定義 17
3.2.4 線性規劃模式 21
3.3 模式範例 26
3.4記憶體產業供應鏈網絡之訂單分配模式說明 33
3.4.1 假設條件 33
3.4.2 已知資訊 33
3.4.3符號定義 34
3.4.4 線性規劃模式 38
第四章 模式評估與分析 44
4.1 模式分析 44
4.1.1 總體稅務對最小成本之影響 44
4.1.2 進口稅、增值稅及其退稅對於最小成本之影響 48
4.2 產業案例 51
4.2.1 產業案例相關數據 51
4.2.2 產業案例結果 59
第五章 結論與未來發展方向 64
5.1 結論 64
5.2 未來發展方向 65
參考文獻 66
附錄一 模式範例之規劃結果 68
附錄二 模式分析之規劃結果 79

Altiparmak, F., Gen, M., Lin, L., & Paksoy, T. (2006). A genetic algorithm approach for multi-objective optimization of supply chain networks. Computers Industrial Engineering, 51(1), 196-215.
Arntzen, B. C., Brown, G. G., Harrison, T. P., & Trafton, L. L. (1995). Global Supply Chain Management at Digital Equipment Corporation. Interfaces, 25(1), 63-93.
Bhatnagar, R., Chandra, P., & Goyal, S. K. (1993). Models for multi-plant coordination. European Journal of Operational Research, 67(2), 141-160.
Chen, S. Y., & Chen, C. C. (1999). Shortest Path for A Supply Chain Network. Paper presented at the The 4th Internataional Conference, Asia-Pacific Region of Decision Sciences Institute.
Chern, C. C., & Hsieh, J. S. (2007). A heuristic algorithm for master planning that satisfies multiple objectives. Computers Operations Research, 34(11), 3491-3513.
Chopra, S. (2003). Designing the distribution network in a supply chain. Transportation Research Part E: Logistics and Transportation Review, 39(2), 123-140.
Feng, C.-M., & Wu, P.-J. (2009). A tax savings model for the emerging global manufacturing network. International Journal of Production Economics, 122(2), 534-546.
Giglio, D., & Minciardi, R. (2003). Modelling and optimization of multi-site production systems in supply chain networks. Paper presented at the Systems, Man and Cybernetics, 2003. IEEE International Conference .
Guinet, A. (2001). Multi-site planning: A transshipment problem. International Journal of Production Economics, 74(1–3), 21-32.
Harland, C. (1997). Supply chain operational performance roles. Integrated Manufacturing Systems, 8(2), 70 - 78.
Ishibuchi, H., Yamamoto, N., Murata, T., & Tanaka, H. (1994). Genetic algorithms and neighborhood search algorithms for fuzzy flowshop scheduling problems. Fuzzy Sets and Systems, 67(1), 81-100.
Kanyalkar, A. P., & Adil, G. K. (2008). A robust optimisation model for aggregate and detailed planning of a multi-site procurement-production-distribution system. International Journal of Production Research, 48(3), 635-656.
Kawtummachai, R., & Van Hop, N. (2005). Order allocation in a multiple-supplier environment. International Journal of Production Economics, 93–94(0), 231-238.
Khouja, M. (2001). The evaluation of drop shipping option for e-commerce retailers. Computers & Industrial Engineering, 41(2), 109-126.
Lanshun, N., Xiaofei, X., & Dechen, Z. (2006). Collaborative Planning in Supply Chains by Lagrangian Relaxation and Genetic Algorithms. Paper presented at the Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress.
Lendermann, P., Boon Ping, G., & McGinnis, L. F. (2001). Distributed simulation with incorporated APS procedures for high-fidelity supply chain optimization. Paper presented at the Simulation Conference, 2001.
Lin, J., & Chen, Y.-Y. (2007). A multi-site supply network planning problem considering variable time buckets– A TFT-LCD industry case. The International Journal of Advanced Manufacturing Technology, 33(9), 1031-1044.
Moon, C., Kim, J., & Hur, S. (2002). Integrated process planning and scheduling with minimizing total tardiness in multi-plants supply chain. Computers & Industrial Engineering, 43(1–2), 331-349.
Shen, W., Kremer, R., Ulieru, M., & Norrie, D. (2003). A collaborative agent-based infrastructure for Internet-enabled collaborative enterprises. International Journal of Production Research, 41(8), 1621-1638.
Timpe, C. H., & Kallrath, J. (2000). Optimal planning in large multi-site production networks. European Journal of Operational Research, 126(2), 422-435.
Vidal, C. J., & Goetschalckx, M. (2001). A global supply chain model with transfer pricing and transportation cost allocation. European Journal of Operational Research, 129(1), 134-158.
Vignaux, G. A., & Michalewicz, Z. (1991). A genetic algorithm for the linear transportation problem. Systems, Man and Cybernetics, IEEE Transactions on, 21(2), 445-452.
Watson, K., & Polito, T. (2003). Comparison of DRP and TOC financial performance within a multi-product, multi-echelon physical distribution environment. International Journal of Production Research, 41(4), 741-765.
Wu, S. D., & Golbasi, H. (2004). Multi-Item, Multi-Facility Supply Chain Planning: Models, Complexities, and Algorithms. Computational Optimization and Applications, 28(3), 325-356.
Zhuan, W., Qinghua, Z., bo, Y., & Wenwen, H. (2008). 4/R/I/T distribution logistics network 0-1 programming model and application. Comput. Ind. Eng., 55(2), 365-378.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊