跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 15:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林士戎
研究生(外文):Lin Shih-Rong
論文名稱:具資源限制及趕工計畫整合之模糊多目標非線性規劃多專案排程研究-結合遺傳演算法
論文名稱(外文):A Study of Multi-Project Scheduling with Fuzzy Multi-Objective Nonlinear Programming Technique, Resource Constraint and Crashing Plan integrated - Utilizing Genetic Algorithm
指導教授:張炳騰張炳騰引用關係曾宗瑤曾宗瑤引用關係
指導教授(外文):Chang Ping-TengTseng Tsueng-Yao
口試委員:時序時白炳豐
口試委員(外文):Shih Hsu-ShihPai Ping-Feng
口試日期:2012-06-21
學位類別:碩士
校院名稱:東海大學
系所名稱:工業工程與經營資訊學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:57
中文關鍵詞:專案管理多專案排程資源限制現金流量淨現值趕工作業成本與時間模糊數學模糊多目標非線性規劃限制演化最佳化-懲罰函數遺傳演算法
外文關鍵詞:Project managementmulti-project schedulingresource constraintscash-flow new present valuefuzzy multi-objective nonlinear programmingconstrained evolutionary optimization-penalty function methodgenetic algorithm
相關次數:
  • 被引用被引用:1
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本研究目標為具資源限制、現金流量、作業趕工成本與時間、多目標與模糊考慮之多專案排程模式整合之研究。有限的資源可以包括如:人力、資金、機器設備、物料等,其數量限制可以影響原本不具先後順序的作業也因資源的限制,而須排出其先後關係。此外,專案作業於時間上之成本與收入及現金流量淨現值(net present value, NPV),在專案的排程上的選擇也非常重要,因此也須考慮。同時,在專案的規劃階段,需先設定時程與成本的目標,但此兩者往往在執行過程中,受外在不確定因素影響而與規劃之目標有所落差。
當專案因進度嚴重落後,無法準時完工之情形時則需進行趕工,方可使專案仍可在預定完工日準時完工。以上因素在過去文獻已有探討,但並無文獻於多專案排程中完整的探討這些因素中,因此本研究建構出一多目標非線性規劃模式。並結合了模糊集合理論,針對參數(如:資源、成本、折現率等)利用模糊數學來進行模糊,而獲得模糊數學展開之模糊多目標非線性規劃模式,讓本研究的數學模式更接近現實情況。亦不同於過去運用模糊理論之專案排程文獻,本研究運用模糊目標的方式來將式子模糊。
最後本研究將所有的目標函數和限制式合併成為一適應函數,此模式是將所目標函數和限制式常態化後,計算出目標函數和限制式之間的關係,最大的好處是在於,在計算目標函數時,限制式不只有限制的功能,而是可以將違反的懲罰量,加諸於目標函數,形成一個新的適應函數。並利用泛用啟發式演算方法(metaheuristics)中的基因演算法找出最佳解,尋找此模式的最佳目標:最小化總專案工期與最大化總專案淨現值。

Nowadays a project scheduling technique capable of effectively planning project agenda and resource allocations can be an extremely important foundation for successful implementation of the project. The limited resources can include, e.g. workforce, capitals, machine, materials, etc. and their capacities can influence activities that originally have no precedence relationships but now due to limited and shared resources they are having precedence relationships in scheduling. Moreover, the costs and received payments(cash in- and out-flows)over time of the projects and their new present value should be considered in scheduling the projects too. Also, an activity’s cost and correspondingly time can be a decision variable in real world too, as planning a project or multi-projects. Though the above considerations have been taken into in various literatures, yet none of them have considered all the factors completely in multi-project scheduling situations.
Therefore, in this research, we have proposed and developed an integration of multi-project scheduling with resource constraints, cash flows, operation crash cost and crash time, multi-objectives, and fuzzy consideration for multi-project scheduling situations. Inclusively, besides the factors considered, they are also considered in fuzziness with fuzzy arithmetic, and result in the fuzzy-arithmetic operated fuzzy multi-objective programming modeling, and this is different from the past literature where only the concept of fuzzy goals was applied in the project scheduling. And in order to solve this resulting fuzzy multi-objective nonlinear programming, a newly developed technique also in this project, as an effective penalty function method of constrained evolutionary optimization, with genetic algorithm is applied, and which effectively provides the solution to the problem.


摘 要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 V
表目錄 VI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究流程與架構 2
第二章 文獻探討 4
2.1 有限資源專案排程問題 4
2.2 模糊理論相關文獻 5
2.2.1 模糊理論 5
2.2.2 模糊集合 6
2.2.3 模糊數及隸屬函數 6
2.2.4 模糊多目標規劃問題 8
2.3 限制演化最佳化-懲罰函數法 10
2.4 基因遺傳演算法 11
第三章 模糊多目標非線性規劃模式 14
3.1 多目標非線性規劃模式建立 15
3.1.1 數學模式符號定義 15
3.1.2 數學模式基本假設 17
3.1.3 資源限制之多目標非線性規劃模式 18
3.2 模糊多目標非線性規劃模式 24
3.2.1 三角模糊數 24
3.2.2 模糊多目標非線性規劃模式 26
3.3 自組織適應懲罰策略(SOAPS)懲罰函數 30
3.4 基因遺傳演算法 31
第四章 範例討論 33
4.1 問題背景 33
4.2 排程結果 37
第五章 結論與建議 41
5.1 研究成果 41
5.2 未來研究建議 41
參考文獻 42

中文文獻
邱煥能、蔡登茂(1993)。有限資源多專案排程單專案法與多專案法之比較研究。中國工業工程學刊,第十卷,第三期,第171-179頁。
陳弘翊(1999)。多重專案規劃與控制:系統動態分析法暨流程建模技術的應用(碩士論文)。國立中央大學,桃園縣。
陳旭明,(1997)。有限資源最大化淨現值專案排程問題之研究(碩士論文)。國立台灣科技大學,台北市。
詹蕙珍(2004)。模糊多目標非線性規劃在有限資源多專案排成問題之應用(碩士論文)。屏東科技大學,屏東縣。

英文文獻
Ayyub, B. M. and Halder, A. (1984). Project scheduling using fuzzy set concepts. J. Constr. Engrg. and Mgmt., ASCE, 110(2), 189-203.
Abbasi, G. Y., and Arabiat, Y. A. (2001). A heuristic to maximize the net present value for resource-constrained project-scheduling problems. Project Management Journal, 32(2), 17-24.
Arikan, F. and Gungor, Z. (2001). An application of fuzzy goal programming to a multi objective project network problem. Fuzzy sets and Sys., 119, 49-58.
Abadi, S. N., Aghassi, H., and Roghanian, E. (2011). A multi-attribute GA for piecewise linear Time-Cost Trade-off Scheduling optimization. Information and Communication Technologies, 1187-1192.
Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. J. J. Grefenstette (Ed.), Proceedings of the First International Conference on Genetic Algorithms, 101-111.
Chiu, H. N., and Tsai, D. M. (2002). An efficient search procedure for the resource-constrained multi-project scheduling problem with discounted cash flows. Construction Management and Economics, 20(1), 55-66.
Chanas, S. and Kamburowski, J. (1981). The use of fuzzy variables in PERT. Fuzzy sets and Sys, 5, 11-19.
Chen, S. M. and Chang, T. H. (2001). Finding multiple possible critical paths using Fuzzy PERT. IEEE Trans. on Sys., Man, and Cyb. Part B, 31(6), 930-937.
Chang, P.-T., and Lo, Y.-T. (2001). Modeling of job-shop scheduling with multiple quantitative and qualitative objectives and a GA/TS mixture approach. International Journal of Computer Integrated Manufacturing, 14, 367-384.
Chen, J.-S., Pan, J. C.-H., and Lin, C.-M. (2008). A hybrid genetic algorithm for the re-entrant flow-shop scheduling problem. Expert Systems with Applications, 34, 570-577.
Deb, K., Anand, A., and Joshi, D. (2002). A computationally efficient evolutionary algorithm for real-parameter optimization. Evolutionary Computation, 10(4), 371-395.
De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems. Ph.D. Dissertation, University of Michigan. Dissertation Abstracts International, 36(10), 5140B.
Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2), 311-338.
Dubois, D. and Prade, H. (1997), The three semantics of fuzzy sets, Fuzzy Sets and Systems, 49(1), 65-74.
Doersch, R. H., and Patterson, J. H. (1977). Scheduling a project to maximize its present value: a zore-one programming approach. Management Scienc, 23(8), 882-889.
Eiben, A. E., Hinterding, R., and Michalewicz, Z. (1999). Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 3(2), 124-141.
Elliott, L., Ingham, D. B., Kyne, A. G., Mera, N. S., Pourkashanian, M. and Wilson, C. W. (2004). Genetic algorithms for optimization of chemical kinetics reaction mechanisms. Progress in Energy and Combustion Science, 30, 297-328.
Farmani, R. and Wright, J.A. (2003). Self-adaptive fitness formulation for constrained optimization. IEEE Transactions on Evolutionary Computation, 7(5) 445-455.
Gen, M. and Cheng, R. (1996). Interval programming using genetic algorithms. Proceedings of the Sixth International Symposium on Robotics and Manufacturing.
Grefenstette, J. J. (1986). Optimized control of parameters for genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 16, 122-128.
Georgiou, S. D. (2007). New two-variable full orthogonal designs and related experiments with linear regression models. Statistics and Probability Letters, 77, 25-31.
Hansen, N., and Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 9(2), 159-195.
Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press; Extended new Edition, 1992. Cambridge: MIT Press.
Hu, Y.-B., Wang, Y-P. and Guo, F.-Y. (2005). A new penalty based genetic algorithm for constrained optimization problems. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, 18-21.
Hoffmeister, F. and Sprave, J. (1996). Problem-independent handling of constraints by use of metric penalty functions. Proceedings of the Fifth Annual Conference on Evolutionary Programming, 289-294.
Hsu, G. J. Y. and Tzeng, Y. R. (1990). A new algorithm of fuzzy multiobjective programming: the compromise factor approach. Proceedings: The First International Symposium on Uncertainty Modeling and Analysis. Maryland University, Dec, 3-5.
Hannan, E. L. (1981). Linear programming with multiple fuzzy goals. Fuzzy Sets and Systems, 6, 235-248.
Janikow, C. Z., and Michalewicz, Z. (1991). An experimental comparison of binary and floating point representation in genetic algorithms. Proceedings of the Fourth International Conference on Genetic Algorithms, 31-36.
Kerzner, H. (2001). Project Management: A system Approach to Planning, Scheduling, and Controlling. Seventh edition. New York: Van Nostrand Reinhold.
Knight, R. M. (1966). Resource allocation and multi-project scheduling in a research and development environment. Unpublished M.S. Thesis. Massachusetts Institute of technology.
Kurtulus, I., and Davis, E. W. (1982). Multi-project scheduling: categorization of heuristic rules performance. Management Science, 28(2), 161-172.
Kurtulus, I., and Narula, S. C. (1986). Multi-project scheduling: analysis of project performance. IIE Transactions, 17(1), 58-66.
Kaufmann, A. and Gupta, M. M. (1988). Fuzzy Mathematical Models in Engineering and Management Science. New York: Elsevier Science Publishing Company Inc.
Kiriklidis, C., Kirytopoulos, K., and Rokou, E. (2011). Exploring close-optimal solutions for the Time Constrained Scheduling Prolem in project management. Industrial Engineering and Engineering Management, 844-847.
Liu, J. B., Hong, R., and Xie, J. H. (2008).Critical Chain Project Management Based Heuristic Algorithm for Multiple Resources-Constrained Project. Business and Information Management, 1, 330-335.
Leite, J. P. B. and Topping, B. V. T. (1998). Improved genetic operators for structural, engineering optimization. Advances in Engineering Software, 29, 529–62.
Lobo, F. G. (2000). The parameter-less genetic algorithm: Rational and automated parameter selection for simplified genetic algorithm operation. Ph.D. Thesis, University of Lisbon, Portugal.
Lin, C.-Y. and Wu, W.-H. (2004). Self-organizing adaptive penalty strategy in constrained genetic search. Structural and Multidisciplinary Optimization, 26(6), 417-428.
Leu, S. S., Chen, A. T. and Yang, C. H. (2001). A GA-based fuzzy optimal model for construction time-cost trade-off. Int. J. Project Mgmt., 19, 47-58.
Liu, S. T. (2003). Fuzzy activity times in critical path and project crashing problems. Cyb. and Sys., 34, 161-172.
Lorterpong, P. and Moselhi, O. (1996). Project-network analysis using fuzzy sets theory. J. Constr. Engrg. and Mgmt., ASCE, 122(4), 308-318.
Luhandjula, M. K, (1982). Compensatory operators in fuzzy programming withmultiple objectives. Fuzzy Sets and Systems, 8, 245-252.
Leberling, H. (1981). On finding compromise solutions in multicriteria problems using the fuzzy min-operator. Fuzzy Sets and Systems, 6, 108-118.
Lova, A., Maroto, C. and Tormos, P. (2000). A multicriteria heuristic method to improve resource allocation in multiproject scheduling. European Journal of Operational Research, 127, 408-424.
Meredith, J.R. and Mantel, S.J. Jr. (2000). Project Management: A Managerial Approach. Fourth edition. New York: John Wiley and Sons.
Mize, J. H.(1964). A heuristic scheduling model for milti-project organization. Unpublished Ph.D. Thesis. Purdue University.
Mon, D. L., Cheng, C. H. and Lu, H. C. (1995). Application of fuzzy distributions on project management. Fuzzy sets and Sys., 73, 227-234.
Morales, A. K. and Quezada, C.V. (1998). A universal eclectic genetic algorithm for constrained optimization. Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing, 518-522.
Michalewicz, Z. (1992). Genetic algorithms + data structures = evolution programs. 1st Edition. Berlin: Springer-Verlag. 2nd Edition, 1994. 3rd Edition, 1996.
Michalewicz, Z., Logan, T., and Swaminathan, S. (1994). Evolutionary operators for continuous convex parameter spaces. Proceedings of the Third Annual Conference on Evolutionary Programming, 84-97.
Myers, R., and Hancock, E. R. (1997). Genetic algorithm parameter sets for line labeling. Pattern Recognition Letters, 18, 1363-1371.
Mayer, D. G., Belward, J. A., and Burrage, K. (2001). Robust parameter settings of evolutionary algorithms for the optimisation of agricultural systems models. Agricultural Systems, 69, 199-213.
Murata, T., Ishibuchi, H., and Tanaka, H. (1996). Genetic algorithms for flows shop scheduling problems. Computers and Industrial Engineering, 30, 1061–1071.
Mizumoto, M. and Tanaka, K. (1976). The four operations of arithmetic on fuzzy numbers. Systems-Computers-Controls, 7, 73-81.
Nasution, S. H. (1994). Fuzzy critical path method. IEEE Trans. on Sys., Man, and Cyb, 24(1), 48-57.
Ozdamar, L., and Dundar, H. (1997).A flexible heuristic for a multi-mode capital constrained project scheduling problem with probabilistic cash inflows. Computers and Operations Research, 24, 1187-1200.
Puzzi, S. and Carpinteri, A. (2008). A double-multiplicative dynamic penalty approach for constrained evolutionary optimization. Structural and Multidisciplinary Optimization, 35(5), 431-445.
Patterson, J. H. (1973). Alternative methods of project scheduling with limited resources. Naval Research Logistics Quarterly, 20(4), 767-784.
Patterson, J. H. (1976). Project scheduling: the effects of problem structure on heuristic performance. Naval Research Logistics Quarterly, 23(1), 95-122.
Russell, R. A. (1986). A comparison of heuristics for scheduling projects with cash flows and resource restrictions. Management Science, 32(10), 1291-1300.
Sakawa, M. (1988). An interactive fuzzy satisficing method for multiobjective linear fractional programming problems. Fuzzy Sets and Systems, 28, 129-144.
Schaffer, J. D., Caruna, R. A., Eshelman, L. J., and Das, R. (1989). A study of control parameters affecting online performance of genetic algorithms for function optimization. Proceedings of Third International Conference on Genetic Algorithm, 51-60.
Schmitt, L. M. (2001). Theory of genetic algorithms. Theoretical Computer Science, 259, 1-61.
Suwa, H., Morita,D., and Sandoh, H. (2010). A new framework of critical chain scheduling in project management. Engineering Systems Management and Its Applications, 1-6.
Smith-Daniels, D. E., Padman, R., and Smith-Daniels, V.L. (1996). Heuristic scheduling of capital constrained projects. Journal of operations Management, 14, 241-254.
Tian, Z., Zhang, Z. and Pen, W. (2012). A Critical Chain Based Multi-project Management Plan Scheduling Method. Industrial and Information System, 2010 2sd, 304-308.
Tessema, B. and Yen, G.G. (2009). An adaptive penalty formulation for constrained evolutionary optimization. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 39(3), 565-578.
Todoroki, A., and Ishikawa, T. (2004). Design of experiments for stacking sequence optimizations with genetic algorithms using response surface approximation. Composite Structures, 64, 349-357.
Tsai, D. M., and Chiu, H. N. (1996). Two heuristics for scheduling multiple projects with resource constraints. Construction Management and Economics, 14(6), 325-340.
Vose, M. D. (1999). The simple genetic algorithm: Foundations and theory. Cambridge, MA: MIT Press.
Wu, W.-H. and Lin, C.-Y. (2004). The second generation of self-organizing adaptive penalty strategy for constrained genetic search. Advances in Engineering Software, 35(2), 815-825.
Wang, Y., Cai, Z., Zhou, Y. and Fan, Z. (2009). Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Structural and Multidisciplinary Optimization, 37(4), 395-413.
Wang, W., Bai, Y., Cai, C., and Yan, X. (2010). Application of Resource-Constrained Project Scheduling with a Critical Chain Method on organizational Project Management. Computer Design and Applications, 2, 51-54.
Yao, J. S. and Lin, F. T. (2000). Fuzzy critical path method based on signed distance ranking of fuzzy numbers. IEEE Trans. on Sys., Man, and Cyb. Part A, 30(1), 76-82.
Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval. Information science, 24, 143-161.
Yokota, T., Gen, M., Ida, K. and Taguchi, T. (1996). Optimal design of system reliability by an improved genetic algorithm. Electronics and Communications in Japan, 79(2) 41-51.
Zimmermann, H. J. (1976). Description and optimization of fuzzy systems. International Journal of General Systems, 2, 209-215.
Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1, 45-56.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top