跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 06:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張永長
研究生(外文):Chang, Yung-Chang
論文名稱:以刮膜式蒸發器提純乳酸之熱質傳研究
論文名稱(外文):Investigation of Heat and Mass Transfer Inside a Wiped-Film Evaporator for Purification of Lactic Acid
指導教授:程學恆
指導教授(外文):Cheng, Shueh-Hen
口試委員:謝樹木陳錫仁張煖
口試委員(外文):Hsieh, Shu-MuChen, Hsi-JenChang, Hsuan
口試日期:2012-06-19
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:143
中文關鍵詞:刮膜式蒸發器熱傳質傳
外文關鍵詞:Wiped-film evaporatorHeat transferMass transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:660
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
刮膜式蒸發器具有高真空度操作,以及較短之滯留時間等特性,適合高黏度與熱敏感物質的濃縮純化,本研究乃針對乳酸水溶液系統,以刮膜式蒸發器進行提純濃縮研究,深入探討乳酸純化過程中之熱質傳現象。
本研究分兩階段,第一階段為三水準全因子乳酸提純實驗,吾人乃以進料流量、加熱溫度與刮板轉速等為操作變因,以乳酸提純濃度為應答,進行了迴歸分析,得到一個二階多項式迴歸模式,並找出了影響刮膜式蒸發器操作的顯著因子;第二階段為刮膜式蒸發器模擬部分,建立了代表該系統之質傳與熱傳現象之數學模式,以微分代數方程組方式呈現,結合了物性資料與熱、質傳關聯式,並以乳酸純化之實驗數據為依據,以遺傳基因演算法進行最佳化參數擬合,得到了該裝置之關聯式參數,其中包括了液相熱傳係數 ,液相質傳係數 ,氣相質傳係數 ,氣液界面有效面積比 ,這些關聯式將可於該裝置之設計與規模放大之用。
Wiped-film evaporators(WFEs) can operate under high vacuum and requires only short residence time. Because of the features, WFEs are suitable for concentrating heat-sensitive as well as highly viscous materials. This study investigated the purific ation of aqueous lactic acid solution using a WFE in which heat and mass transport were coupled.
The investigation comprised two stages. The first stage involved a three-level ful l-factorial experimental study of concentrating lactic acid solution where feed ra te, hot oil temperature, and speed of rotation were taken as control factors, and purity of concentrated lactic acid was treated as response. The regression analysi s resulted in a second-order polynomial fit using the significant factor identifie d. The second stage involved building a simulation module of the WFE. A mathematic al model in the form of differential-algebraic equations (DAEs) was established by taking interfacial phase equilibrium, as well as heat and mass transport phenomena into account. Physical properties models were also considered in the simulation. P arameters of heat and mass transfer correlations were fitted to the experimental d ata and were obtained by optimization using genetic algorithm. The resulting corre lations presented below can be used for the design and scale-up of WFEs.

中文摘要 III
Abstract IV
誌謝 V
目錄 VI
圖目錄 X
表目錄 XIII
第一章 緒論 1
1.1前言 1
1.2研究動機 1
1.3論文組織與研究方法 2
第二章 文獻回顧 4
2.1真空蒸發程序 4
2.2刮膜式蒸發器(wiped-film evaporators, WFE) 8
2.2.1基本結構 9
2.2.2操作原理 10
2.2.3刮膜式蒸發器操作參數 11
2.2.3.1進料流量 11
2.2.3.2加熱溫度 12
2.2.3.3真空度 12
2.2.3.4刮板轉速 12
2.2.4流體力學、熱傳、質傳的探討 13
2.2.4.1流體力學 13
2.2.4.2熱傳特性的探討 17
2.2.4.2質傳特性的探討 20
第三章 實驗部分 26
3.1 實驗藥品 26
3.2 實驗儀器與設備 26
3.3刮膜式蒸發裝置 27
3.3.1裝置簡介 27
3.3.1驅動系統與刮板 30
3.3.2加熱系統與蒸發器 30
3.3.3壓力控制系統 30
3.4實驗目的與步驟 31
3.4.1實驗目的 31
3.3.2實驗步驟 32
3.5樣品分析方式 34
3.2.1酸鹼滴定分析 34
3.2.1分析步驟 35
第四章 刮膜式蒸發器之模式建立 36
4.1熱、質傳同時傳遞過程 37
4.2建立數學模式 38
4.2.1模式推導 41
4.3模式中之熱質傳現象 47
4.3.1熱傳表示式 47
4.3.1.1熱油端熱傳機制 51
4.3.1.2液體端熱傳機制 52
4.3.1.3氣體端熱傳機制 53
4.3.2質傳機制 54
4.3.3系統的物性資料 57
4.4微分代數方程式 70
第五章 結果與討論 73
5.1實驗結果分析 73
5.1.1進料量影響 74
5.1.2刮板轉速影響 75
5.1.3加熱溫度影響 77
5.1.4實驗結果結論 77
5.2迴歸分析 84
5.2.1二階多項式迴歸模式 84
5.2.2變異數分析 86
5.3 數值模擬 94
5.3.1 數值模擬參數說明 98
5.3.2 數值模擬過程 102
5.3.2.1遺傳演算法 105
5.3.2.2模擬結果 107
5.3.3氣液界面有效面積(effective interfacial area) 112
5.3.3.1模擬參數說明與過程 113
5.3.3.2 模擬結果 115
第六章 結論與未來展望 125
6.1結論 125
6.2未來展望 126
參考文獻 128
附錄A模式推導過程 131
附錄B熱油(ZUG SHT-320)物性數據與關聯式 138
附錄C實驗系統相關物性 141
簡歷 143


1.Abichandani, H. and S. C. Sarma, “Hydrodynamics and heat transfer in thin film scraped surface heat exchangers-A review,” J. Food Process Eng., 1987, 9, 143-172.

2.Bott, T. R. and J. J. B. Romero, “Heat transfer across a scraped surface,” Can. J. Chem. Eng, 1963, 41, 213-219.

3.Bott, T. R. and M. R. Sheikh, “Evaporation at a scraped surface,” Chem. Eng. Prog. Symp. Ser., 1966, 62, 97-103.

4.Billet, B., “Separation efficiency of thin-film evaporators,” Chin. J. Chem. Eng., 2004, 12, 179-184.

5.Eckles, A. J. and P. H. Benz, “The basic of vacuum,” Chem. Eng., 1992, 99, 78-86.

6.Freese, H. L. and W. B. Glover, “Mechanically agitated thin-film evaporators,” Chem. Eng. Prog., 1979, 75, 52-58.

7.Gouw, T. H. and R. E. Jentoft, “Efficiency Measurements on an all-glass wiped-film still,” Ind. Eng. Chem. Process Des. Develop., 1967, 6, 62-67.

8.Gilliland, E. R. and T. K. Sherwood, “Diffusion of vapors into air streams,” Ind. Eng. Chem., 1934, 26, 516-523.

9.Goldberg, D. E., Genetic algorithms in search, optimization, and machine learning, Addison-Wesley, 1989.

10.Godau, H. J., “Flow processes in thin-film evaporators,” Int. Chem. Eng., 1975, 15, 445-449.

11.Gruber, G. and J. L. Rak, “Model of a wiped-film still,” Chem. Eng. Prog., 1989, 85, 12-18.

12.Hausen, H., “New equations for heat transfer at free or forced fluid flow,” Allg. Waermetech., 1959, 9, 75-79.

13.Holland, J. H., Adaptation in natural and artificial systems, The University of Michigan Press, 1975.

14.Komori, S., K. Takata, and Y. Murakami, “Flow structure and mixing mechanism in an agitated thin-film evaporator,” J. Chem. Eng. Jpn., 1988, 21, 639-644.

15.Komori, S., K. Takata, and Y. Murakami, “Flow and mixing characteristics in an agitated thin-film evaporator with vertically,” J. Chem. Eng. Jpn., 1989, 22, 346-351.

16.Komori, S., Y. Murakami, and R. Nagaosa, “The effects of multiple inclined blades on flow and mixing characteristics in an agitated thin-film evaporator,” J. Chem. Eng. Jpn., 1990, 23, 550-555.

17.Mutzenburg, A. B., “Agitated thin-film evaporators. Part 1. Thin-film technology,” Chem. Eng., 1965, 13, 175-178.

18.Mckenna, T. F., “Design model of a wiped film evaporator applications to the devolatilisation of polymer melts,” Chem. Eng. Sci., 1995, 50, 453-467.

19.Onda, K., H. Takeuchi, and Y. Okumoto, “Mass transfer coefficient between gas and liquid phase in packed column,” J. Chem. Eng. Jpn., 1968, 1, 56.

20.Poling, B. E., J. M. Prausnitz, and J. P. O’connell, The properties of gases and liquids ,5th edtion, McGraw-Hill, 2001.

21.Ryans, J.L. and D.L. Roper, Process vacuum system design operation, New York , McGraw-Hill, 1986.

22.Rajan S., M. Kumar, M. J. Ansari, D. P. Rao, and N. Kaistha, “Limiting gas liquid flows and mass transfer in a novel rotating packed bed(HiGee),” Ind. Eng. Chem. Res., 2011, 50, 986-997.

23.Skoczylas A. and J. Dziak, “Separation efficiency of thin-layer evaporators,” Comput. Chem. Eng., 1990, 14(9), 1001-1007.

24.Sieder, E. N. and G. E. Tate, “Heat transfer and pressure drops of liquid in tubes,” Ind. Eng. Chem., 1936, 28(12), 1429-1435.

25.Schaal, F., K. Schilling, and H. Hasse, “Separation efficiency of thin film evaporators: experiments with water-ethylene glycol and methanol-water and stage-based modeling,” Chem. Eng. Process., 2008, 47, 209-214.

26.Yih, S. M. and K. Y. Chen, “Gas absorption into wavy and turbulent falling liquid films in a wetted-wall column,” Chem. Eng. Commun, 1982, 17, 123-136.

27.Zeboudj, S., N. Belhaneche-Bensemra, R. Belabbes, and P. Bourseau, “Modelling of flow in a wiped film evaporator,” Chem. Eng. Sci., 2006, 61, 1293-1299.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊