跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張志誠
研究生(外文):Chang, Chihcheng
論文名稱:奈米銀線與奈米碳管對氧化鋅薄膜性質的影響
論文名稱(外文):Effects Of Silver Nanowires And Carbon Nanotubes On ZnO Thin Films
指導教授:何志松洪東興洪東興引用關係
指導教授(外文):Ho, ChihsungHung, Dongsing
口試委員:何志松洪東興粘譽薰
口試委員(外文):Ho, ChihsungHung, DongsingNien, Yuhsun
口試日期:2012-07-17
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:156
中文關鍵詞:溶膠-凝膠氧化鋅奈米銀線多壁奈米碳管透明隔熱介電性質
外文關鍵詞:sol-gelZnOAgNWsMWCNTstransparent and heat shieldingdielectric properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:734
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,利用溶膠-凝膠法製備添加奈米銀線(AgNWs)或多壁奈米碳管(MWCNTs)之氧化鋅(ZnO)薄膜,觀察其表面性質、透明隔熱性質、介電性質的變化。結果發現AgNWs或MWCNTs的添加量對於不同濃度的ZnO薄膜之性質有顯著的影響。
薄膜於200 ℃乾燥10分鐘,在空氣下經275 ℃燒結2.5小時。結果發現,未添加前的ZnO薄膜,其表面平均粗糙度(Ra)、近紅外線遮蔽率,由ZnO濃度從0.5〜0.9 M,隨之增加,0.5 M ZnO薄膜有最小Ra值33.24 nm,近紅外線遮蔽率皆在10 %以下,而可見光穿透率隨ZnO濃度下降而下降,可見光穿透率皆達80 %以上。
添加AgNWs後,平均粗糙度、近紅外線遮蔽率,其變化趨勢隨ZnO濃度和添加量增加而增加,平均粗糙度比未添加前大,當添加莫耳比值為1/50的AgNWs於0.5 M ZnO薄膜,有最小Ra值42.88 nm,近紅外線遮蔽率的範圍約10〜40 %,可見光穿透率隨ZnO濃度和添加量增加而下降,其值範圍約40〜90 %。
添加MWCNTs後,平均粗糙度、近紅外線遮蔽率,其變化趨勢隨ZnO濃度和添加量增加而增加,平均粗糙度比添加AgNWs後小,當添加莫耳比值為1/50的MWCNTs於0.5 M ZnO薄膜,有最小Ra值30.94 nm,近紅外線遮蔽率的範圍約在15〜95 %,可見光穿透率隨ZnO濃度和添加量增加而下降,其值範圍約5〜85 %。
於室溫,在10 MHz頻率下的介電常數與介電損失,介電常數隨ZnO濃度增加而增加,而介電損失隨之下降,0.9 M的ZnO薄膜有最大的介電常數值1564.82,最低的介電損失值0.86。
當AgNWs的添加莫耳比值降為1/50時,才開始有顯著的介電常數,隨著ZnO濃度上升而提高,當添加莫耳比值為1/50的AgNWs於0.9 M ZnO薄膜,有最大的介電常數值1010.3;介電損失則隨之下降,當添加莫耳比值為1/50的AgNWs於0.9 M ZnO薄膜,有最低的介電損失值2.26。
添加MWCNTs後的介電常數,隨著ZnO濃度提高,都有上升的趨勢,當添加莫耳比值為1/10的MWCNTs於0.9 M ZnO薄膜有其最大的介電常數值4017.21,介電損失在ZnO濃度為0.9M時,當添加莫耳比值為1/10的MWCNTs於0.9 M ZnO薄膜有最低的介電損失值0.93。

In this study, we reported on the micro-structural, transparent and heat shielding, and dielectric properties of AgNWs-doped and MWCNTs-doped ZnO thin films prepared by sol-gel method. The doping amounts of AgNWs or MWCNTs have strong influence on the properties of the ZnO thin films.
The thin films were dried at a constant temperature of 200 ℃ for 10 minutes and then sintered at a constant temperature of 275 ℃ for 2.5 hours. As the concentration of undoped ZnO thin films increases from 0.5 M to 0.9 M, the surface average roughness (Ra) and the NIR shielding increase, but the visible transparency decreases. The 0.5 M undoped ZnO film exhibits the lowest Ra of 33.24 nm. All the undoped ZnO thin films exhibit the NIR shielding below 10 % and exhibit the visible transparency above 80 %.
As the doping amounts of AgNWs and the concentrations of ZnO films increase, the Ra and the NIR shielding increase, but the visible transparency decreases. The 0.5 M ZnO thin film doped with molar ratio of 1/50 of AgNWs exhibits the lowest Ra of 42.88 nm. The AgNWs-doped ZnO thin films exhibit the NIR shielding in the range of 10-40 % and the visible transparency in the range of 40-90 %.
As the doping amounts of MWCNTs and the concentrations of ZnO films increase, the Ra and the NIR shielding increase, but the visible transparency decreases. The 0.5 M ZnO thin film doped with molar ratio of 1/50 of MWCNTs exhibits the lowest Ra of 30.94 nm. The MWCNTs-doped ZnO thin films exhibit the NIR shielding in the range of 15-95 % and the visible transparency in the range of 5-85 %.
The dielectric constant increases and the dielectric loss decreases with increasing undoped ZnO concentration up to 0.9 M at room temperature. The undoped 0.9 M ZnO thin film exhibits the largest dielectric constant of 1564.82 and the lowest dielectric loss of 0.86 at 10 MHz.
The 0.9 M ZnO thin film doped with molar ratio of 1/50 of AgNWs exhibits the highest dielectric constant of 1010.3 and the lowest dielectric loss of 2.26.
The 0.9 M ZnO thin film doped with molar ratio of 1/10 of MWCNTs exhibits the highest dielectric constant of 4017.21 and the lowest dielectric loss of 0.93.
摘要 I
ABSTRACT III
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 2
第二章 文獻回顧 3
2.1 透明導電膜簡介 3
2.2 ZnO薄膜的特性 5
2.2.1 ZnO晶體結構 5
2.2.2 ZnO薄膜的光學特性 7
2.2.3 ZnO薄膜的電學特性 10
2.3 奈米銀的基本性質與應用 12
2.3.1 隱身隔熱塗料 12
2.3.2 觸媒 13
2.3.3 抗菌產品 13
2.4 奈米碳管的基本性質 14
2.4.1 機械性質 14
2.4.2 導熱性質 14
2.5 ZnO薄膜應用於透明隔熱材料 16
2.5.1 熱能 16
2.5.2 透明隔熱薄膜 16
2.6 介電性質 19
2.7 溶膠-凝膠法(sol-gel method) 23
2.7.1 溶膠-凝膠法概論 23
2.7.2 溶膠-凝膠法原理 25
2.7.3 溶膠-凝膠法的塗佈方式 27
2.7.4 旋轉塗佈法(spin coating) 31
第三章 實驗方法與性質量測 33
3.1 實驗藥品 33
3.2 ZnO薄膜製備流程 37
3.2.1 ZnO凝膠液製備 38
3.2.2 預處理AgNWs及MWCNTs 38
3.2.3 摻雜AgNWs或MWCNTs之ZnO凝膠混合液製備 39
3.2.4 玻璃基板準備 39
3.2.5 旋轉塗佈鍍膜 39
3.6 性質測量及分析 40
3.6.1 X光繞射分析儀(XRD) 41
3.6.2 UV/Vis/NIR分光光譜分析儀 41
3.6.3 掃描式電子顯微鏡(SEM) 41
3.6.5 原子力顯微鏡(AFM) 42
3.6.6 介電性質量測 42
第四章 結果與討論 43
4.1 XRD結構分析 43
4.2 表面微結構 49
4.3 表面性質 69
4.4 透明隔熱性質 80
4.5 介電性質分析 102
第五章 結論 126
5.1 添加AgNWs於ZnO薄膜 127
5.2 添加MWCNTs於ZnO薄膜 128
第六章 參考文獻 130

1.C.G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications”, Thin Solid Films, vol. 411, 1 (2002).
2.B.G. Lewis and D.C. Paine, “Applications and processing of transparent conducting oxides”, MRS Bull., vol. 25, 22 (2000).
3.D. S. Ginley and C. Bright, “Transparent conducting oxides”, MRS Bull., vol. 25, 15 (2000).
4.G.B. Palmer and K.R. Poeppelmeier, “Phase relations, transparency and conductivity in Ga2O3–SnO2–ZnO”, Solid State Sci., vol. 4, 317 (2002).
5.I. Hamberg and C.G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows”, J. Appl. Phys., vol. 60, 123 (1986).
6.Y. Okuhara, T. Kato, H. Matsubara, N. Isu, and M. Takata, “Near-infrared reflection from periodically aluminium-doped zinc oxide thin films”, Thin Solid Films, vol. 519, 2280 (2011).
7.R. Das and S. Ray,” Zinc oxide-a transparent, conducting IR-reflector prepared by rf-magnetron sputtering”, J. Phys. D: Appl. Phys., vol. 36, 152 (2003).
8.D. R. Sahu, S. Y. Lin, and J. L. Huang, “Investigation of conductive and transparent Al-doped ZnO/Ag/Al-doped ZnO multilayer coatings by electron beam evaporation”, Thin Solid Films, vol. 516, 4728 (2008).
9.M. D. Johan Ooi and M. M. Hassin, “Investigation on Dielectric Constant of Zinc Oxide”, Modern Applied Science, vol. 3, 110 (2009).
10.羅子涵,「高介電常數有機/無機複合絕緣層氧化鋅薄膜電晶體製作與研究」,碩士論文,國立成功大學電機工程所,民國96年。
11.K. B. Sundaram and A. Khan, “Characterization and optimization of zinc oxide films by r.f. magnetron sputtering”, Thin Solid Films, vol. 295, 87 (1997).
12.J. Mass, P. Bhattacharya, and R. S. Katiyar, “Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition”, Mater. Sci. Eng. B, vol. 103, 9 (2003).
13.D. Raoufi and T. Raoufi, “The effect of heat treatment on the physical properties of sol–gel derived ZnO thin films”, Appl. Surf. Science, vol. 255, 5812 (2009).
14.L. Xu and X. Li, “Influence of Fe-doping on the structural and optical properties of ZnO thin films prepared by sol–gel method”, J. Cryst. Growth, vol. 312, 851 (2010).
15.J. Lee, K. Ko, and B. Park, “Electrical and optical properties of ZnO transparent conducting films by the sol-gel method”, J. Cryst. Growth, vol. 247, 119 (2003).
16.P. G. Collins, M. S. Arnold, and P. Avouris, “Engineering carbon nanotubes and nanotube circuits using electrical breakdown”, Science, vol. 292, 706 (2001).
17.鐘松政,鐘寶堂,傅懷廣,「透明隔熱材料在智慧建材之應用」,工業材料雜誌,第290期,民國100年。
18.K. E. Lee, M. Wang, E. J. Kim, and S. H. Hahn , “Structural, electrical and optical properties of sol–gel AZO thin films”, Current Appl. Phys., vol. 9, 683 (2009).
19.T. Minami, H. Sato, H. Nanto, and S. Takata, “Group III impurity doped zinc oxide thin Films prepared by RF magnetron sputtering”, Jpn. J. Appl. Phys., vol. 24, 781 (1985).
20.S. Fujiwara, J. Kusakado, and T. Kimura, “Fluorine doping in
transparent conductive ZnO thin films by a sol-gel method using
trifluoroacetic acid”, J. Mater. Sci. Lett., vol. 17, 781 (1998).
21.許峰豪,「透明導電薄膜簡介」,碩士論文,私立正修科技大學電子工程研究所,民國100年。
22.李 帥,王 峰,田 偉,楊文君,「Sol-Gel法製備Al摻雜ZnO薄膜及其性能的探究」,材料導報,第1期,第25頁,民國100年。
23.E. Burstein, “Anomalous optical absorption limit in InSb”, Phys. Rev., vol. 93, 632 (1954).
24.B. E. Semelius, K. F. Berggern, Z. C. Jin, I. Hamberg, and C. G. Granqvist, “Band gap tailoring of ZnO by means of heavy Al doping”, Phys. Rev. B, vol. 37, 10244 (1998).
25.陳靜怡,「氧化鋅中介層對ITO透明導電膜性質之影響」,碩士論文,國立成功大學材料科學及工程研究所,民國91年。
26.H. W. Lee, S. P. Lau, Y. G. Wang, K. Y. Tse, H. H. Hng, and B. K. Tay, “Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique”, J. Cryst. Growth, vol. 268, 596 (2004).
27.Z. C. Jin, I. Hamberg, and C. G. Granqvist, “Optical properties of sputter‐deposited ZnO : Al thin films”, J. Appl. Phys., vol. 64, 5117 (1988).
28.T. Minami, H. Nanto, and S. Takata, “Optical properties of aluminum doped zinc oxide thin films prepared by RF magnetron sputtering”, Jpn. J. Appl. Phys., vol. 124, 605 (1985).
29.吳坤陽,「溶膠凝膠法製備含銀之AZO透明導電膜的研究」,碩士論文,國立成功大學化學工程研究所,民國94年。
30.王家俊,「以射頻磁控濺鍍法成長摻雜氫之氧化鋅薄膜」,碩士論文,國立成功大學化學工程研究所,民國92年。
31.B. Lin, Z. Fu, Y. Jia, and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions”, J. Electrochem. Soc., vol. 148, 110 (2001).
32.周更生,李賢學,高振裕,盧育杰,「功能性粉末-奈米銀」,科學發展,第408期,第32頁,民國95年。
33.鐘裕隆,「CNTs-ZnO奈米複合材製備與特性分析」,碩士論文,國立台北科技大學製造科技研究所,民國96年。
34.周琬蓉,「電漿有機改質奈米碳管高分子複合材料之特性與探討」,博士論文,國立成功大學化學工程研究所,民國90年。
35.ISO 20473, “Optics and photonics-Spectral bands”, ISO, stage code: 90.60, TC 172 (2007).
36.C. Guo, S. Yin, M. Yan, and T. Sato, “Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process”, J. Mater. Chem., vol. 21, 5099 (2011).
37.C. Guo, S. Yin, and T. Sato, “Synthesis of one-dimensional hexagonal sodium tungsten oxide and its near-infrared shielding property”, Nanosci. Nanotechnol. Lett., vol. 3, 413 (2011).
38.陳皇鈞譯,「材料科學與工程」,曉園出版社,民國78年。
39.E. N. Bunting, G. R. Shelton, and A. S. Creamer, “Properties of barium-strontium titanate dielectrics”, J. Res. Natl. Bur. Std., vol. 38, 337 (1947).
40.N. H. Chan, R. K. Sharma, and D. M. Smyth, “Nonstoichiometry in acceptor-doped BaTiO3”, J. Am. Cer. Soc., vol. 65, 167 (1982).
41.吳巧伶,「以溶膠-凝膠法製備摻雜鉈之鈦酸鍶鋇借電陶瓷塊材與薄膜及其性質之研究」,碩士論文,私立東海大學化學工程研究所,民國97年。
42.W. M. Moreau, “Semiconductor Lithography”, Plenum Press, New York (1988).
43.江松勳,「AZO透明導電膜之製備與特性分析」,碩士論文,國立成功大學化學工程研究所,民國95年。
44.C. Iamsamai, A. Soottitantawat, U. Ruktanonchai, S. Hannongbua, and S. T. Dubas, “Simple method for the layer-by-layer surface modification of multiwall carbon nanotubes”, Carbon, vol. 49, 2039 (2011).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top