跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 05:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:池厚亘
研究生(外文):Chih, Hou-Syuan
論文名稱:團簇型金-鐵核殼奈米粒子的製備與應用
論文名稱(外文):Preparation and application of Fe3O4@Au cluster magnetic microspheres
指導教授:賴英煌
指導教授(外文):Lai, Ying-Huang
口試委員:楊振宜鄭有舜
口試委員(外文):Yang, Chen-IJeng, U-Ser
口試日期:2012-06-28
學位類別:碩士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:118
中文關鍵詞:鐵金複合奈米粒子對硝基苯酚催化還原磁性材料
外文關鍵詞:4-Nitrophenol catalytic reductionmagnetic materialsbifunctionalRaman enhancement
相關次數:
  • 被引用被引用:2
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究水熱法合成氧化鐵磁性奈米粒子與鐵-金核殼奈米粒子在硝基酚化合物催化與磁性分離之應用研究。在合成四氧化三鐵磁性奈米粒子,探討水熱製程變因:固定溫度與反應時間; 改變還原劑與凝聚劑濃度。並且探討水溶液中之磁性能力。後者主要將3-氨基丙基三乙氧基矽烷( 3-aminopropyltrimethoxysilane,APTMS )共價鍵結在磁性奈米粒子上進行表面改質,且接附不同大小的金奈米粒子,探討催化應用、及磁性分離上現象。 由穿透式電子顯微鏡( TEM )、X射線繞射儀( XRD )分析得之,使用水熱合成法的磁性奈米粒子粒徑大小具有高度的均一性,粒徑大小約為200 nm,即便是接附其他金屬奈米粒子並不會改變本身的形態,由FTIR、熱重分析儀( TGA )、Ninhydrin分析確認APS已共價鍵結在磁性奈米粒子上。磁性測量得之,此奈米粒子具有超順磁性,其飽和磁化量71.5 emu/g。
對於鐵-金核殼奈米粒子研究,主要探討在改變金奈米粒子的尺寸,應用於4-硝基酚的還原催化反應與表面增顯拉曼光譜應用。研究結果發現,隨著載體上金奈米粒子的粒徑增加,其表面增顯的效果也隨著線性增強。另外,製備出的鐵-金核殼奈米粒子具有良好的磁性分離現象、催化特性與回收利用性。硝基酚化合物擬一階反應速率常數與載體上的金奈米粒子的尺寸大小成反比的趨勢,另所製備而得的奈米粒子具有磁性回收能力及高達5次以上的再使用率。結果顯示所開發的異核結構材料,在催化用應用上不僅具回收再利用及且可對對環境有危害之產物進行催化分解的行為,操作成本低,且為水相條件反應,為相當值得開發的綠色奈米科技。
In the past two decades, nanotechnology has been developed quickly in various fields. Nanoparticles have potential applications in chemistry, physics, electronics, biology, and medicine due to their unique characteristics different from bulk materials. Metal nanoparticles have been widely used as efficient catalysts in transformations of organic substances because of their large surface-to-volume ratio and different electronic properties compared to corresponding bulk metals. For instance, gold nanoparticles (AuNPs) exhibit high catalytic activity although bulk gold is typically an ineffective catalyst. Magnetic carriers have been extensively used in the fields of metal ions and dyes recovery, drug delivery, enzyme immobilization, protein and cell separation, and so on. Recently, magnetic nanoparticles have emerged as robust, readily available, high-surface-area heterogeneous supports in catalytic transformations. They possess the added advantage of being magnetically recoverable, thereby eliminating the requirement for either solvent swelling before or catalyst filtration after the reaction. In this study, The Fe3O4 nanoparticles were fabricated by a simple solvent-thermal method. The Fe3O4 particles were first modified with APS (3-aminopropyltrimethoxysilane) and then adsorbed lots of gold nanoseeds for further Au seeds shell formation. The phases and composition analysis of the Fe3O4@Au were characterized by X-ray diffraction (XRD).The morphology of the samples was observed by transmission electron microscopy (TEM) which revealed that the Fe3O4 nanoparticles were micro-spheres with almost the identical size of ~200 nm. Implications of the findings to the design of interfacial reactivities via core-shell nanocomposites for magnetic, catalytic are also briefly discussed. We synthesized Au nanocatalyst on the magnetic Fe3O4 for catalytic activity for the reduction of 4-NP to 4-AP with sodium borohydride was studied. Its reusability and the corresponding kinetic properties were also investigated.
中文摘要 .................................................................................. I
Abstract .................................................................................. V
致謝 ....................................................................................... VII
目錄 .......................................................................................... IX
圖索引 ...................................................................................... XIII
第一章 前言與理論文獻回顧 .................................................................. 1
1.1奈米金觸媒 .............................................................................. 2
1.2 磁性材料 ......................................................................... 5
1.2.1 磁學理論與特性 ................................................................. 5
1.2.2 磁性與粒徑的關係 ............................................................. 9
1.2.3 磁滯曲線之簡介 ............................................................... 10
1.3奈米級四氧化三鐵之合成方法 ................................................. 12
1.3.1常用奈米粒子製備法 ........................................................ 12
1.4 水熱合成法 ...................................................................... 13
1.4.1 水熱法概述 ....................................................................... 13
1.4.2 水熱合成法之原理 ........................................................... 13
1.4.3 水熱法製備粉體的優點 ................................................... 15
1.5 奈米鐵製備 ................................................................. 16
1.6載體奈米級四氧化三鐵之應用 ................................................. 18
1.7 磁性奈米載體-金奈米粒子於催化上的應用 ........................... 25
研究動機與目的 .......................................................................... 30
第二章 實驗設備、材料與方法 ............................................................ 31
2.1 研究架構及流程 ......................................................................... 31
2.2 實驗藥品 ........................................................................ 32
2.3 實驗合成步驟 .................................................................. 34
2.3.1水熱法製備Fe3O4 奈米粒子之步驟 ............................... 34
2.3.2 Fe3O4奈米粒子胺基修飾之步驟 .................................. 36
2.3.3製備不同大小Au 奈米粒子之步驟 ................................ 36
2.3.4製備Fe3O4@Au奈米粒子之步驟 ................................... 37
2.3.5 硝基酚類化合物催化反應 ............................................... 37
2.4 穿透式電子顯微鏡 (TEM) ....................................................... 38
2.5 X-射線繞射 (XRD)分析 ............................................................ 40
2.6 傅立葉轉換紅外線光譜 (FT-IR) 分析 .................................... 41
2.7 紫外光-可見光光譜儀 (UV-VIS spectrometry) 分析 ............. 42
2.8熱重分析(TGA) ..................................................................... 43
2.9 BET 比表面積分析 .................................................................... 44
2.10 SQUID 磁性分析 ..................................................................... 45
2.11 拉曼光譜儀分析 ....................................................................... 45
第三章 鐵奈米顆粒的製備特性鑑定 .................................................... 47
3.1 水熱合成法製備氧化鐵奈米粒子 ............................................ 47
3.1.1水熱合成法製備氧化鐵奈米粒子之還原機制 ............... 48
3.2改變反應條件製備氧化鐵奈米粒子 ......................................... 49
3.2.1改變反應條件(還原劑濃度)製備氧化鐵奈米粒子 ......... 49
3.2.2改變反應條件(polyacrylamide濃度)製備氧化鐵奈米粒子 ............................................. 51
3.3氧化鐵奈米粒子表面胺基改質之鑑定 ..................................... 53
3.3.1 Ninhydrin 顯色鑑定 ......................................................... 53
3.3.2 FT-IR 官能基分析 ............................................................ 55
3.3.3 ( TGA ) 熱重損失分析 ..................................................... 57
3.4水向條件製備金奈米粒子 ......................................................... 59
3.5水相條件製備Fe3O4@Au奈米粒子 ......................................... 61
3.6 Fe3O4@Au與Fe3O4 XRD分析 ................................................ 64
3.7 Fe3O4@Au與Au光學性質分析 ............................................... 67
3.8選區繞射Fe3O4與Fe3O4@Au奈米粒子 .................................. 69
3.9表面積(BET)分析Fe3O4奈米粒子 ............................................ 71
3.10磁性分析Fe3O4與Fe3O4@Au奈米粒子 ................................ 72
第四章Fe3O4@Au 奈米粒子的催化性能 ............................................. 75
4.1接附載體奈米結構與單純奈米粒子的反應速率分析 ............. 77
4.2改變催化劑劑量的反應速率分析 ............................................. 81
4.3觸媒回收使用次數探討 ............................................................. 84
4.4觸媒使用次數穩定性評估 ......................................................... 85
4.5表面拉曼增顯探討...................................................................... 88
第五章 結論...................................................................... 93
參考文獻 ........................................................................ 95
(1) 莊萬發 1998.
(2) 劉吉平; 郝向陽; 林鴻明 2003.
(3) 曹茂盛; 關長斌; 徐甲強 2002.
(4) http://nano.nstm.gov.tw/01conception/conception02_02.asp.
(5) Haryta, M. The Chemical Record 2003, 3, 75.
(6) Bond, G. C. Molecules 2012, 17, 1716.
(7) Haruta, M.; Yamada, N.; Kobayahsi, T.; Iijima, S. Journal of Catalysis 1989, 115, 301.
(8) Torres Sanchez, R. M.; Ueda, A.; Tanaka, K.; Haruta, M. Journal of Catalysis 1997, 168, 125.
(9) Kahlich, M. J.; Gasteiger, H. A.; Behm, R. J. Journal of Catalysis 1999, 182, 430.
(10) Daté, M.; Ichihashi, Y.; Haruta, M. Jpn Pat Appl 2000, 158422.
(11) Haruta, M. Now and Future 1992, 7, 13.
(12) Walters, R. D.; Weimer, J. J.; Smith, J. E. Catal Lett 1995, 30, 181.
(13) Aida, T.; Higuchi, R.; Niiyama, H. Chem Lett 1990, 2247.
(14) Takita, Y.; Imamura, T.; Mizuhara, Y.; Abe, Y.; Ishihara, T. Appl Catal B: Environmental 1992, 1, 79.
(15) Okumura, M.; Haruta, M.; Wang, X.; Kajikawa, O.; Okada, O. 2001, 15.
(16) Ueda, A.; Haruta, M. Appl Catal B: Environmental 1996, 285, 81.
(17) Ueda, A.; Haruta, M. Gold Bull 1999, 32, 3.
(18) Ueda, A.; Haruta, M. Appl Catal B: Environmental 1998, 18, 115.
(19) Yan, L.; Zhang, X.; Ren, T.; Zhang, H.; Wang, X.; Suo, J. Chem Comm 2002, 860.
(20) Sakurai, H.; Ueda, A.; Kobayashi, T.; Haruta, M. J Chem Soc Chem Commun 1997, 271.
(21) Andreeva, D.; Idakiev, V.; Tabakov, T.; Andreev, A. Journal of Catalysis 1996, 158, 91.
(22) Tabakova, T.; Idakiev, V.; Andreeva, D.; Mitov, I. Appl Catal A: General 2000, 202, 336.
(23) Sakurai, H.; Haruta, M. Appl Catal A: General 1995, 127, 93.
(24) Hayashi, T.; Tanaka, K.; Haruta, M. Journal of Catalysis 1998, 178, 566.
(25) Kalvachev, Y. A.; Hayashi, T.; Tsubota, S.; Haruta, M. Journal of Catalysis 1999, 186, 228.
(26) Uphade, B. S.; Akita, T.; Nakamura, T.; Haruta, M. Journal of Catalysis 2002,209, 331.
(27) Stangland, E. E.; Stavens, K. B.; Andres, R. P.; Delgass, W. N. Journal of Catalysis 2000, 191, 332.
(28) Jia, J.; Haraki, K.; Kondo, J. N.; Domen, K.; Tamaru, K. J Phys Chem 2000, B104, 11153.
(29) Bond, G. C.; Sermon, P. A. Gold Bull 1973, 6, 102.
(30) Bond, G. C.; Sermon, P. A. J C S Chem Comm 1973, 444.
(31) Okumura, M.; Akita, T.; Haruta, M. Catal Today 2002, 74, 265.
(32) Bailie, J. E.; Abdullah, H. A.; Anderson, J. A.; Roechester, C. H.; Richardson, N. V.; Hodge, N.; Zhang, J.-G.; Burrows, A.; Kiely, C. J.; Hutchings, G. J. Phys Chem Chem Phys 2001, 3, 4113.
(33) Mohr, C.; Hofmeister, H.; Lucas, M.; Claus, P. Chemie Ingenieur Techn 1999, 71, 869.
(34) Nkosi, B.; Adams, M. D.; Coville, N. J.; Hutchings, G. J. Journal of Catalysis 1991, 128, 378.
(35) Duff, D. G.; Baiker, A. Langmuir 1993, 9, 2301.
(36) Lin, S. D.; Bollinger, M.; Vannice, M. A. Catal Lett 1993, 17, 245.
(37) Chang, C. K.; Chen, Y. J.; Yeh, C. T. Appl. Catal. A : General 1998, 174, 13.
(38) Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Journal of Catalysis 1989, 115, 301.
(39) Okumura, M.; Nakamura, S.; Tsubota, S.; Nakamura, T.; Azuma, M.; Haruta, M. Catal Lett 1998, 51, 53.
(40) Okumura, M.; Haruta, M. Chem Lett 2000, 396.
(41) Kang, Y. M.; Wan, B. Z. Applied Catalysis A: General 1995, 128, 53.
(42) 馬振基 2003.
(43) Shylesh, S.; Schunemann, V.; Thiel, W. R. Angew. Chem. Int. Ed. 2010, 49, 3248.
(44) http://www.citie688.com/news/bencandy.php?fid=3&id=1216.
(45) Morey, G. W. J. Am. Ceram. Soc 1953, 36, 279.
(46) Dawson, W. J. Am. Ceram. Soc. Bull 1988, 67, 1673.
(47) Wada, S.; Suzuki, T.; Noma, T. J. Ceram. Soc. Japan 1995, 103, 1220.
(48) Chittofrati, A.; Matijevic, E. Colloids and Surf 1990, 48, 65.
(49) Demetsyanets, L. M.; Lopachev, A. N. 1973.
(50) Walton, R. I. Chem. Soc. Rev 2002, 31, 230.
(51) Chen, C. J.; Lai, H. Y. J. CSME 2008, 29, 457.
(52) Cheng, W.; Tang, K.; Qi, Y.; Sheng, J.; Liu, Z. J. Mater. Chem 2010, 20, 1799.
(53) Fuliu, J.; Shanzhao, Z.; Binjiang, G. Environ. Sci. Technol 2008, 42, 6949.
(54) Liu, S.; Jia, B.; Qiao, R.; Yang, Z.; Yu, Z.; Liu, Z.; Liu, K.; Shi, J.; Ouyang, H.; Wang, F.; Gao, M. Mol. Pharmaceutics 2009, 6, 1074.
(55) Chen, W.; Yi, P.; Zhang, Y.; Zhang, L.; Deng, Z.; Zhang, Z. ACS Appl. Mater. Interfaces 2011, 3, 4085.
(56) Guo, Z.; Shao, C.; Zhang, M.; Mu, J.; Zhang, Z.; Zhang, P.; Chen, B.; Liua, Y. J. Mater. Chem 2011, 21, 12083.
(57) Wang, C.; Yin, H.; Dai, S.; Sun, S. Chem. Mater 2010, 22, 3277.
(58) Zhai, Y.; Zhai, J.; Wang, Y.; Guo, S.; Ren, W.; Dong, S. J. Phys. Chem. C 2009, 113, 7009.
(59) Zhu, Y.; Shen, J.; Zhou, K.; Chen, C.; Yang, X.; Li, C. J. Phys. Chem. C 2011, 115, 1614.
(60) Ge, J.; Huynh, T.; Hu, Y.; Yin, Y. NANO LETTERS 2008, 8, 931.
(61) Shylesh, S.; Schunemann, V.; Thiel, W. R. Angew. Chem. Int. Ed 2010, 49, 3428.
(62) Zhu, Y.; Stubbs, L. P.; Ho, F.; Liu, R.; Ship, C. P.; Maguire, J. A.; Hosmane, N. S. ChemCatChem 2010, 2, 365.
(63) Frey, N. A.; Peng, S.; Cheng, K.; Sun, S. Chem. Soc. Rev 2009, 38, 2532.
(64) Hamm, R. E.; Jr, C. M. S.; Grant, D. M. J. Am. Chem. Soc 1954, 76, 2111.
(65) Pham, A. N.; Waite, T. D. J. Phys. Chem. A 2008, 112, 643.
(66) Zhu, M.; Diao, G. J. Phys. Chem. C 2011, 115, 18923.
(67) Cheng, W.; Tang, K.; Qi, Y.; Sheng, J.; Liu, Z. J. Mater. Chem 2010, 20.
(68) Lin, F. H.; Doong, R. A. J. Phys. Chem. C 2011, 115, 6591.
(69) Premasiri, W. R.; Moir, D. T.; Klempner, M. S.; Krieger, N.; II, G. J.; Ziegler, L. D. J. Phys. Chem. B 2005, 109, 312.
(70) Xu, F.; Zhang, Y.; Sun, Y.; Shi, Y.; Wen, Z.; Li, Z. J. Phys. Chem. C 2011, 115, 9977.
(71) Wei, F.; Zhang, D.; Halas, N. J.; Hartgerink, J. D. J. Phys. Chem. B 2008, 112, 9158.
(72) Sun, L.; Song, Y.; Wang, L.; Guo, C.; Sun, Y.; Liu, Z.; Li, Z. J. Phys. Chem. C 2008, 112, 1415.
(73) Du, J.; Jing, C. J. Phys. Chem. C 2011, 115, 17829.
(74) Xia, L.; Jia, Y.; Liu, G.; Yang, Z.; Chen, X.; Zhanga, H.; Sunb, M. J. Raman Spectrosc 2010, 41, 398.
(75) Hunyadi, S. E.; Murphy, C. J. J. Mater. Chem 2006, 16, 3929.
(76) Zhang, Y. X.; Zeng, H. C. J. Phys. Chem. C 2007, 111, 6970.
(77) Shebanova, O. N.; Lazor, P. J. Raman Spectrosc 2003, 34, 845.
(78) Njoki, P. N.; Lim, I.-I. S.; Mott, D.; Park, H.-Y.; Khan, B.; Mishra, S.; Sujakumar, R.; Luo, J.; Zhong, C.-J. J. Phys. Chem. C 2007, 111, 14664.
(79) Fang, P. P.; Li, J. F.; Yang, Z. L.; Li, L. M.; Ren, B.; Tian, Z. Q. J. Raman Spectrosc 2008, 39, 1679.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top