跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 03:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陶際唐
研究生(外文):Jitang, Tau
論文名稱:分散式液液微萃取強心配醣體化合物
論文名稱(外文):Dispersive Liquid-liquid Micro-extraction Of Cardiac Glycosides
指導教授:劉建忠劉建忠引用關係
指導教授(外文):Liou, Chien-Chung
口試委員:龍鳳娣陳世裕
口試委員(外文):Feng-DI LungChih-YU(Shih-yu) Chen
口試日期:2012-06-25
學位類別:碩士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:91
中文關鍵詞:分散式液液微萃取法雷射脫附游離飛行時間質譜儀強心配醣體萃取劑分散劑
外文關鍵詞:dispersive liquid-liquid microextraction methodMALDI-TOF MSCardiac Glycosideextraction solventdispersive solvent
相關次數:
  • 被引用被引用:1
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一項新的分析技術,以分散式液液微萃取法結合基質輔助雷射脫附游離飛行質譜儀,對強心配醣體進行鑑定分析。利用分散式液液微萃取技術,可以同時達到萃取與濃縮分析物的效果,將萃取劑(二碘甲烷)與分散劑(四氫呋喃),快速注入樣品溶液中,形成混濁狀的溶液,此時分析物通過分散劑被萃取至萃取劑中,經由離心將沉積相分離,取出離心管底部的沉積液並且與α-CHCA基質溶液混合,經過乾燥以後,利用基質輔助雷射脫附游離飛行質譜法,進行分析物的偵測。實驗中探討萃取劑的種類與體積、分散劑的種類與體積、萃取時間、離心時間、樣品pH值等因素對於實驗結果的影響,在最佳化的實驗條件下,所得到的分析物檢量線,濃度線性範圍為 0.01 μM 至1 μM;相關係數(R2)約在 0.99以上;對於長葉毛地黃毒苷的偵測極限,可以達2.1 nM。此外,將此分析方法應用於人體尿液樣品的偵測,可成功地檢測出強心配醣體藥物成份。

This study is raised a new analytic skill.Cardiac glycosides were determined by a novel dispersive liquid-liquid microextraction method coupled with MALDI-TOF MS that can obtain the effect of extraction and condensed sample. The appropriate mixture of extraction solvent ( CH2I2 ) and dispersive solvent ( THF ) was rapidly injected into a sample solution. It formed a cloudy solution which and cardiac glycosides were extracted into the extraction solvent by the dispersive solvent. After centrifugation, the sediment solvent was mixed with α-CHCA before determined by the MALDI-TOF MS. Several important experimental conditions, such as extraction time, centrifugation time, pH value, the kind and the volume of extraction solvents, dispersive solvent, were investigated. Under the optimal conditions, our experiment results showed a linear calibration curve in the concentration ranged from 0.01 μM to 1 μM with a correlative coefficient approximately (R2) 0.99 above and the limit of detection for a standard solution of digitoxin was 2.1 nM. In addition, this method had been successfully applied for the analysis of cardiac glycosides in human urine.
摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅵ
表目錄 Ⅷ
壹、緒論 1
1.1. 前言 1
1.2. 強心配醣體介紹 2
1.2.1. 藥理作用 4
1.2.2. 相關文獻回顧 6
1.3. 常用的萃取法簡介 9
1.3.1. 固相微萃取法 11
1.3.2. 單滴微萃取法 11
1.3.3. 超臨界流體萃取法 12
1.3.4. 分散式液液微萃取法 13
1.4. 基質輔助雷射脫附游離飛行時間質譜儀簡介 17
1.4.1. 基質輔助雷射脫附游離法的發展史 17
1.4.2. 基質的特性與功能 19
1.4.3. 基質輔助雷射脫附游離法樣品製備方式 22
1.4.4. 基質輔助雷射脫附游離法離子形成機制 24
1.4.5. 飛行時間質量分析器的原理與構造 28
1.4.6. 基質輔助雷射脫附游離飛行時間質譜儀的優點 33
1.5. 研究動機 36
貳、材料與方法 37
2.1. 化學藥品 37
2.2. 儀器設備 39
2.3. 樣品配製 40
2.4. 分散式液液微萃取參數 41
2.5. 質譜儀操作條件 43
參、結果與討論 45
3.1. 基質選擇與樣品製備 45
3.1.1. 最佳基質 45
3.1.2. 緩衝溶液 48
3.1.3. 以 seed-layer 方式製備樣品 50
3.2. 分散式液液微萃取法的最佳實驗條件 52
3.2.1. 萃取劑的選擇 52
3.2.2. 分散劑的選擇 54
3.2.3. 萃取劑的體積 57
3.2.4. 分散劑的體積 60
3.2.5. 萃取時間 63
3.2.6. 離心時間 67
3.2.7. 樣品溶液的pH值 69
3.2.8. 分散式液液微萃取最佳條件 72
3.3. 標準溶液的檢量線與偵測極限 75
3.4. 生化樣品的檢測 77
3.4.1. 尿液樣品的前處理 77
3.4.2. 尿液樣品的檢量線與偵測極限 79
肆、結論 81
伍、參考文獻 82

1. 康雅斐, 實用藥物學. 華格納企業: 2003
2. Rahimtoola, S.; Tak, T., The use of digitalis in heart failure.Curr . Probl . Cardiol 1996, 21 (12), 781-853.
3. 邱傳淞; 林玉淳; 彭紫君, 最新藥物學. 2th ed.; 匯華圖書出版有限公司:2001.
4. Katzung, B. G., Basic & Clincal Pharmacology. 8th ed.; 合記圖書: 2004.
5. 蔡靖彥, Handbook of Common Drugs. 杏欣出版社: 1999; 1306頁
6. Pellati, F.; Bruni, R.; Bellardi, M.; Bertaccini, A.; Benvenuti, S.,Optimization and validation of a high-
performance liquid chromatography method for the analysis of cardiac glycosides in Digitalis lanata.J Chrom. A
2009, 1216 (15), 3260-9.
7. 楊寶峰; 蘇定馮; 王玲, Pharmacology 藥理學.九州圖書:2004
8. Stone, J.; Soldin, S., Improved liquid chromatographic/immunoassay of digoxin in serum. Clin. Chem. 1988, 34 (12),
2547-51.
9. Stone, J.; Soldin, S., An update on digoxin. Clin. Chem. 1989, 35 (7),
1326-31.
10. Nore, A.; Storstein, L.; Larsen, A.; Amlie, J., Digitalis glycosides in serum, urine, and cerebrospinal fluid,
determined with a commercial radioimmunoassay. Clin. Chem. 1980, 26 (2), 321-3.
11. Karjalainen, J.; Ojala, K., Therapeutic and toxic lanatoside C serum concentrations in hospital patients. Klin
Wochenschr 1975, 53 (14), 685-6.
12. BINE, R. J.; FRIEDMAN, M., The rate of disappearance of lanatoside C. and digitoxin from the blood of rats.
Circulation 1950, 1 (5), 1182-3.
13. Ikeda, Y.; Fujii, Y.; Yamazaki, M., Determination of Lanatoside C and Digoxin in 93 Digitalis Lanata by HPLC and
Its application to analysis of the fermented leaf powder. Journal of Natural Products 1992, 55.
14. Balakina, M. V.; Zvonkova, E. N.; Dyumaev, K. M.; Bykov, V. A., HPLC CONTROL OF THE QUALITY OF Digitalis lanata
RAW MATERIAL.Pharmaceutical Chemistry Journal 2005, 39 (11), 24-29.
15. Tracqui, A.; Kintz, P.; Ludes, B.; Mangin, P., High-performance liquid chromatography-ionspray mass spectrometry
for the specific determination of digoxin and some related cardiac glycosides in human plasma. J Chrom.B Bio.
Sci. 1997, 692 (1), 101-9.
16. Ikeda, Y.; Fujii, Y.; Umemura, M.; Hatakeyama, T.; Morita, M.; Yamazaki, M., Quantitative determination of
cardiac glycosides in Digitalis lanata leaves by reversed-phase thin-layer chromatography. J Chrom. A 1996,
746 (2), 255-60.
17. Pawliszyn, J., Sample preparation: quo vadis. Anal. Chem. 2003, 75 (11),2543-58.
18. 凌永健; 李佩玲; 邱郁凱; 殷裕勝 綠色分析化學; 2007; p 425.
19. Arthur, C. L.; Pawliszyn, J., Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical
Fibers. Anal. Chem. 1990, 62.
20. Prosen, H.; L., Z. i.-K., Solid-phase microextraction. TrAC. 1999, 18 (4), 272-281.
21. Liu, H., Dasgupta, P. K., Analytical chemistry in a drop solvent extraction in a microdrop, Anal. Chem.,
1996, 68, 1817-1821.
22. Liu, W., Lee, H. K., Continuous-flow microextraction exceeding 1000-fold concentration of dilute analytes,
Anal. Chem., 2000, 72,4462-4467.
23. A. S. Teja and C. A. Eckert, “Commentary on supercritical fluids: research and applications,” Ind. Eng. Chem.
Res., Vo1. 39, 2000, pp.4442–4444.
24. M. A. McHugh and V. J. Krukonics, Supercritical Fluids Extractions: Principles and Practice, 2nd ed., 1994,
Butterworths-Heinemann, Boston.
25. R. Dohrn and G. Brunner, “High-pressure fluid-phase equilibria: experimental methods and systems investigated
(1988 ~ 1993),” Fluid Phase Equilibria, Vo1. 106, 1995, pp. 213–282.
26. Rezaee, M.; Assadi, Y.; Milani Hosseini, M.; Aghaee, E.; Ahmadi, F.; Berijani, S., Determination of organic
compounds in water using dispersive liquid–liquid microextraction. J.of Chrom. A 2006, 1116, 1-9.
27. Posthumus, M. A.; Kistemker, P. G.; Meuzelaar, H. L. C., Laser Desorption Mass Spectrometry of Polar Nonvolatile
Bio-Organic Molecules. Anal. Chem. 1978, 50, 985-991.
28. Karas, M.; Bachmann, D.; Hillenkamp, F., Influence of the Wavelength in High-Irradiance Ultraviolet Laser
Desorption Mass Spectrometry of Organic Molecules. Anal. Chem. 1985, 57, 2935-2939.
29. Tanaka, K.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T., Detection of High Mass Molecules by Laser Desorption
Time-of-Flight Mass Spectrometry. Second Japan-China Joint Symposium on Mass Spectrometry 1987, 185-188.
30. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T., Protein and Polymer Analyses up to m/z 100000
by Laser Ionization Time-of-Flight Mass 95 Spectrometry. Rapid Commun. Mass Sp. 1988, 2, 151-153.
31. Karas, M.; Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000
daltons. Anal. Chem. 1988, 60 (20), 2299-301.
32. Caldwell, K. L.; Murray, K. K., Mid-infrared matrix assisted laser desorption ionization with a water/glycerol
matrix. Appl. Surf. Sci. 1998, 127, 242.
33. Fitzgerald, M.; Parr, G.; Smith, L., Basic matrices for the matrix-assisted laser desorption/ionization mass
spectrometry of proteins and oligonucleotides. Anal. Chem. 1993, 65 (22), 3204-11.
34. Juhasz, P.; Costello, C. E.; Biemann, K., Matrix-Assisted Laser Desorption Ionization Mass Spectrometry with 2-(4-
Hydroxyphenylazo)benzoic Acid Matrix. J. Am. Sac. Mass Spectrom. 1993, 4.
35. Ehring, H.; Karas, M.; Hillenkamp, F., Role of Photoionization and Photochemistry in Ionization Processes of
Organic-Molecules and Relevance for Matrix-Assisted Laser Desorption Ionization Mass-Spectrometry. Org. Mass
Spectrom. 1992, 27.
36. Bahr, U.; Karas, M.; Hillenkamp, F.; Fresenius, J., Analysis of Biopolymers by Matrix-Assisted Laser Desorption
Ionization Mass Spectrometry. Anal. Chem. 1994, 66.
37. Overberg, A.; Karas, M.; Bahr, U.; Kaufmann, R.; Hillenkamp, F.,Matrix-Assisted Infared-Laser(2.94 μm)
Desorption/Ionization Mass Spectrometry of Large Biomolecules. Rapid Commun. Mass Sp. 1990, 4.
38. Kussmann, M.; Nordhoff, E.; Rahbek-Nielsen, H.; Haebel, S.; Martin-Rossel-Larsen; Jakobsen, L.; Gobom, J., Matrix-
Assisted Laser Desoption/Ionization Mass Spectrometry Sample Prepation Techniques Designed for Various Peptide
and Protein Analytes. J. Mass Spectrom. 1997, 32, 593-601.
39. Zenobi, R.; Knochenmuss, R., Ion Formation in MALDI Mass Spectrometry. Mass Spectrom. Rev. 1998, 17.
40. Knochenmuss, R., Ion formation mechanism in UV-MALDI. Analyst 2006, 131.
41. Sunner, J., Ionizationin Liquid Secondary Ion Mass Spectrometry (LSIMS). Org. Mass Spectrom. 1993, 28, 805.
42. Kosaka, T.; Kinoshita, T.; Takayama, M., Ion formation and fragmentation of sinapinic acid in electron
ionization, liquid secondary ion and matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun.
Mass Sp. 1996, 10 (4).
43. Harrison, A. G., The Gas-Phase Basicities and Proton Affinities of Amino Acids and Peptides. Mass Spectrometry
Rev. 1997, 16.
44. Breemen, R. B. V.; Snow, M.; Cotter, R. J., Time-Resolved Laser Desorption Mass Spectrometry. I. Desprption of
Preformed ions. Int. J. Mass Spectrom. Ion Phys. 1983, 49, 5.
45. Osteriaa, G.; Russob, S., The Time of Flight electronics for the PAMELA experiment in space. Nucl. Instrum.
Methods Phys. Res. A 2008, 589.
46. Schmida, R. P.; Weickhardt, C., Designing reflectron time-of-flight mass spectrometers with and without grids: a
direct comparison. Int. J. Mass Spectrom. 2001, 206.
47. Guan, B.; Cole, R., Differentiation of both linkage position and anomeric configuration in underivatized
glucopyranosyl disaccharides by anion attachment with post-source decay in matrix-assisted laser
desorption/ionization linear-field reflectron time-of-flight mass spectrometry. Rapid Commun. Mass Sp. 2007, 21
(18), 3165-8.
48. Woods, A. S.; Little, D. P.; Cornish, T.; Cotter, R. J.; Little, D. P., Peptide analysis to the attomole level
using a curved-field reflectron MALDI-TOF mass spectrometer. Journal of the Mass Spectrom. Soci. Japan 1998,
46. 97
49. Piyadasa, C.; Håkansson, P.; Ariyaratne, T., A high resolving power multiple reflection matrix-assisted laser
desorption/ionization time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 1999, 13 (7), 620-4.
50. Behrens, A.; Maie, N.; Knicker, H.; Kogel-Knabner, I., MALDI-TOF mass spectrometry and PSD fragmentation as means
for the analysis of condensed tannins in plant leaves and needles. Phytochem. 2003, 62.
51. Wiley, W. C.; McLaren, I. H., Time-of-Flight Mass Spectrometer with Improved Resolution. Rev. Sci.c Ins. 1955, 26.
52. Yanes, O.; Nazabal, A.; Wenzel, R.; Zenobi, R.; Aviles, F., Detection of noncovalent complexes in biological
samples by intensity fading and high-mass detection MALDI-TOF mass spectrometry. J Proteome Res. 2006, 5 (10),
2711-9.
53. McCombie, G.; Knochenmuss, R., Small-molecule MALDI using the matrix suppression effect to reduce or eliminate
matrix background interferences. Anal. Chem. 2004, 76 (17), 4990-7.
54. Chen, Y.; Tsai, M., Using surfactants to enhance the analyte signals in activated carbon, surface-assisted laser
desorption/ionization (SALDI) mass spectrometry. J Mass Spectrom. 2000, 35 (11), 1278-84.
55. Cuiffi, J.; Hayes, D.; Fonash, S.; Brown, K.; Jones, A., Desorption-ionization mass spectrometry using deposited
nanostructured silicon films. Anal. Chem. 2001, 73 (6), 1292-5.
56. Onnerfjord, P.; Ekström, S.; Bergquist, J.; Nilsson, J.; Laurell, T.; Marko-Varga, G., Homogeneous sample
preparation for automated high throughput analysis with matrix-assisted laser desorption/ionisation time-of-
flight mass spectrometry. Rapid Commun. Mass Spectrom. 1999, 13 (5), 315-22. 98
57. Wang, X.; Fu, L.; Wei, G.; Hu, J.; Zhao, X.; Liu, X.; Li, Y., Determination of four aromatic amines in water
samples using dispersive liquid-liquid microextraction combined with HPLC. J Sep. Sci. 2008, 31 (16-17), 2932-8.
58. Farajzadeh, M.; Seyedi, S.; Shalamzari, M.; Bamorowat, M., Dispersive liquid-liquid microextraction using
extraction solvent lighter than water. J Sep. Sci. 2009, 32 (18), 3191-200.
59. Hu, J.; Fu, L.; Zhao, X.; Liu, X.; Wang, H.; Wang, X.; Dai, L., Dispersive liquid-liquid microextraction combined
with gas chromatography-electron capture detection for the determination of polychlorinated biphenyls in soils.
Anal. Chem. Acta 2009, 640 (1-2), 100-5.
60. Liu, Y.; Zhao, E.; Zhu, W.; Gao, H.; Zhou, Z., Determination of four heterocyclic insecticides by ionic liquid
dispersive liquid-liquid microextraction in water samples. J Chrom. A 2009, 1216 (6), 885-91.
61. 謝景雯,快速偵測尿液中為量蛋白質及血液質譜分析技術的開發.中山大學碩士論文 2006.
62. 林媽堯,以微波衍生及液滴微萃取結合氣相層析/火焰光度偵測法應用於金屬鉻的分析. 東海大學碩士論文 2007.
63. 陳立倫,液相微萃取法結合液相層析儀檢測尿液中尼古丁類藥物.東吳大學碩士論文 2006.
64. 林士為,線上固相萃取結合液相層析質譜儀檢測尿液中氟硝西泮類藥物.東吳大學碩士論文 2005.
65. 楊汶凌,以分散式液液微萃取結合基質輔助雷射脫附游離飛行時間質譜法應用於強心配醣體化合物的偵測.東海大學碩士論文 2009.
66. 籃品渝,以分散式液液微萃取技術結合基質輔助雷射脫附游離飛行時間質譜儀分析毛花苷化合物.東海大學碩士論文 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top