跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/29 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃博森
研究生(外文):Huang, PaoShen
論文名稱:人工林疏伐後蜘蛛多樣性與微棲地環境之變化關係
論文名稱(外文):Relationship Between Spider Diversity and Microhabitats in Plantations Under Differential Thinning Treatments
指導教授:林 仲 平
指導教授(外文):Lin, ChungPing
口試委員:林 仲 平張學文邱志明汪碧涵林宜靜
口試委員(外文):Lin, ChungPingChang, HsuehWenChiu, ChihMinWang, PiHanLin, YiChing
口試日期:2012-06-08
學位類別:博士
校院名稱:東海大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:137
中文關鍵詞:生物多樣性蜘蛛森林管理疏伐紅檜日本柳杉
外文關鍵詞:biodiversityspiderforest managementthinnigChamaecyparis formosensisCryptomeria japaonica
相關次數:
  • 被引用被引用:1
  • 點閱點閱:398
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:1
近年來人工林經營管理之策略,已演變為兼顧經濟效益與生物多樣性之經營模式。在針對不同之林相設計適當的人工林經營管理模式之前,需先了解原始林及不同疏伐程度的人工林當中之物種組成特性之差異,且需掌握目前林業之管理模式對不同層面之生物多樣性的影響。蜘蛛在許多陸生生態系中為物種數量及豐度最高的節肢動物捕食者,遍佈生態系中所有棲地。當棲地因森林演替、自然干擾以及林業操作而改變會導致蜘蛛群聚結構的改變,因此蜘蛛適合用來探討棲地異質度與節肢動物多樣性之關係。本研究目標為藉量化及比較不同疏伐程度森林之蜘蛛群聚結構及物種組成,了解由於林業經營所導致之森林改變對生物多樣性的影響。第一個實驗我監測及量化高海拔的原始林及台灣紅檜人工林棲地中之蜘蛛多樣性及各樣微棲地環境及氣候因子。結果為森林的改變對於棲息於其中的蜘蛛不管是物種、科及和功能群等不同階層有極為顯著的改變;溫度及林下層植被密度為造成多樣性差異之主要環境因子;而其蜘蛛組成差異之主要貢獻者則是利用林下植被之圓網型及立體網型種類。第二個實驗於台灣中部日本柳杉人工林進行蜘蛛多樣性之調查及微環境資料之收集,比較未疏伐樣區和25%、50%疏伐強度樣區的差異。針對不同疏伐處理之人工林於疏伐前一年、疏伐後兩年共進行為期三年,每三個月一次的調查及採集。棲地間比較之結果顯示人工林間地表活動的蜘蛛組成在疏伐前後皆有顯著不同,顯示林相改變顯著影響蜘蛛群聚組成。不同處理人工林棲地間的蜘蛛組成在疏伐前並無不同,但在疏伐兩年後有顯著不同。各處理類型之人工林於疏伐前及疏伐後兩年不同年間的物種及科級組成及數量皆不同,顯示蜘蛛群聚組成有時間上之變化。蜘蛛群聚組成改變的主要貢獻功能群為穴居型、立體網型及地表徘徊型蜘蛛。微環境因子的測量值顯示人工林經疏伐後其過度密集的林下層植被及樹冠層開闊度結構産生改變,可能導致了穴居型蜘蛛物種數及密度之下降並增加立體網及地表徘徊型蜘蛛物種及豐度。而各疏伐處理之人工林其林下植被恢復速度之不同,以及蜘蛛組成在時間上之變化效應,都可能是導致棲地間蜘蛛組成差異的成因。
Current plantation management policies have evolved into focusing on both conserving biodiversity and maximizing economic benefit. Before designing effective strategies for conserving biodiversity of plantations, we need to understand the difference in species characteristics between plantations subjecting to different degree of thinning. In many terrestrial ecosystems, spiders are the most diverse and abundant arthropod predators. Spiders rely on a distinct complex of environmental factors and therefore are sensitive to changes of the habitats due to forest succession, natural disturbances or forestry practice. Therefore, spiders are considered as a good indicator for comparing the biodiversity of various environments and for assessing the effect of disturbances. In the first study I investigated the effects of forest alterations on biodiversity by quantifying and comparing spider diversities and microhabitat parameters of primary and Taiwan red cypress (Chamaecyparis formosensis) plantations located at high elevation in central Taiwan. Multivariate analyses were used to examine the relationships between various microhabitat parameters and spider diversities. The results showed significant differences in spider compositions between different forest types and temperature and understory vegetation density were the major determining factors. Space weavers and orb weavers inhabiting the shrubs were the major contributors of the observed spider diversity differences. In the second study, I compared the spider community structures and guild compositions of plantations under different degree of thinning (0%, 25% and 50%). The study site was located in Cryptomeria japonica plantations in central Taiwan. The diversities and compositions of spiders as well as microhabitat structures and microclimates were quantified once every three months one year before thinning and two years after thinning. Results of analyses showed that spider compositions of plantations differed significantly in all three years. Before thinning, spider compositions did not differ significantly among three plantation types. Results of analyses showed that two years after thinning spider species and family compositions of three plantation types differed significantly. In all three plantation types the spider composition differed from year to year, indicating existence of temporal variations in spider diversity. Burrow dweller, space weaver and ground runner were the major contributors of the observed spider composition differences among plantations receiving different treatments. Thinning treatment might have changed the structures of understory vegetation and canopy cover and consequently resulted in abundance and diversity changes of these guilds. Moreover, the heterogeneity in understory vegetation recovery rate and temporal variation of spider diversity might further generate spider composition variations in forests receiving different degree of thinning.
Chinese abstract 1
Abstract 3
Chapter 1 – Trend of plantation management and background of study 6
Chapter 2 - Experiment in Chamaecyparis formosensis plantation 16
2.1 Introduction 17
2.2 Material and methods 19
2.2.1 Study site 19
2.2.2 Specimen collection 20
2.2.3 Quantification of environmental factors 22
2.2.4 Statistical analyses 23
2.3 Results 25
2.3.1 Spider composition among forest types 25
2.3.2 Environmental variables among forest types 25
2.3.3 Specimens collected by pitfall traps 26
2.3.4 Specimens collected by sweep netting 27
2.3.5 Specimens collected by canopy sweep netting 28
2.4 Discussion 30
Chapter 3 - Experiment in Cyptomeria japonica plantation 36
3.1 Introduction 37
3.2 Material and methods 40
3.2.1 Study site 40
3.2.2 Specimen collection 40
3.2.3 Quantification of environmental factors 42
3.2.4 Statistical analyses 43
3.3 Results 46
3.3.1 Comparison of spider community composition among treatments and years 46
3.3.2 Relationship between spider composition and microhabitat variables: assessing treatment and temporal effects 49
3.3.3 Comparison of spider diversity among treatments and years 53
3.4 Discussion 57
3.4.1 Spider community change through time 57
3.4.2 Spider community changes are affected by thinning treatments 59
3.4.3 Comparison of the thinning practices in Asian and European plantations
60
3.4.4 Spider community as a whole an indicator 63
Chapter 4 – Conclusion 65
References 69
Table directory 82
Figure directory 85
Appendix directory 87

Alaruikka, D. M., Kotze, D. J., Matveinen, K., Niemelä, J., 2002. Carabid and spider assemblages along an urban to rural gradient in Southern Finland. J. Insect. Conserv. 6, 195–206.
Anderson, M. J., Gorley, R. N., Clarke, K. R., 2008. PERMQNOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E. Plymouth, UK.
Bonte, D., Vanhoutte, P. C. L., Thournout, I. V., Maelfait, J. P. 2003., The importance of habitat productivity, stability and heterogeneity for spider species richness in coastal grey dunes along the North Sea and its implications for conservation. Biodivers. Conserv. 13, 2119-2134.
Bultman, T. L., Uetz, G. W., 1982. Abundance and community structure of froest floor spider following litter manipulation. Oecologia. 55, 34-41.
Cardoso, P., Silva, I., de Oliverira N. G., Serrano, A. R. M., 2004a. Higher taxa surrogates of spider (Araneae) diversity and their effciency in conservation. Biol. Conserv. 117, 453-459.
Cardoso, P., Silva, I., de Oliverira, N. G., Serrano, A. R. M., 2004b. Indicator taxa of spider (Araneae) diversity and their effciency in conservation. Biol. Conserv. 120, 517-524.
Cardoso, P., Pekár, S., Jocqué, R., Coddington, J. A., 2011. Global patterns of guild composition and functional diveristy of spiders. PLoS ONE 6, e21710.
Chen, K. C., Tso, I. M., 2004. Spider diveristy on Orchid Island, Taiwan: a comparison between habitats receiving different degrees of human disturbance. Zool. Stud. 43, 519-526.
Chisholm, C., Lindo, Z., Gonzalez, A., 2011. Metacommunity diversity depends on connectivity and patch arrangement in heterogeneous habitat networks. Ecography 34, 415-424.
Clough, Y., Kruess, A., Kleijn, D., Tscharntke, T., 2005. Spider diversity in cereal fields: comparing factors at local, landscape and regional scales. J. Biogeogr. 32, 2007-2014.
Clarke, K. R., Warwick, R. M., 2001. Change in Marine Communities: an Approach to Statistical Analysis and Interpretation, 2nd edition. Technical Report, PRIMER-E, Plymouth, UK.
Council of Agriculture Executive Yuan, Forestry Bureau./http://www.forest.gov.tw/lp. asp.
DeBell, D. S., Thomas, G., Whitesell, C. D., 1997. Growth, development, and yield in pure and mixed stands of eucalyptus and albizia. For. Sci. 43, 286-298.
Drapela, T., Moser, D., Zaller, J. G., Frank, T. 2008. Spider assemblages in winter oilseed rape affected by landscape and site factors. Ecography 31, 254-262.
Fermon, H., Waltert, M., Larsen, T. B., Dall’Asta, U., Mühlenberg, M., 2000. Effects of forest management on diversity and abundance of fruit-feeding nymphalid butterflies in south-eastern Côte d’Ivoire. J. Insect. Conserv. 4, 173-189.
Finch, O. D., 2005. Evaluation of mature conifer plantations as secondary habitat for epigeic forest arthropods (Coleoptera: Carabidae; Araneae). For. Ecol. Manage. 204, 21-34.
Foelix, R. F., 1996. Biology of Spiders, 2nd ed. Oxford University Press, New York. 325 pp.
Frazer, G. W., Canham, C. D., Lertzman, K. P., 1999. Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, New York, USA.
Fujimori, T., 2001. Ecological and Silvicultural Strategies for Sustainable Forest Management. Elsevier Science B.V., Tokyo. 398 pp.
Gurdebeke, S., Bakker, D. D., Vanlanduyt, N., Maelfait, J., P. 2003. Plans for a large regional forest in eastern Flanders (Belgium): assessment of spider diversity and community structure in the current forest remnants. Biodivers. Conserv. 12, 1883-1900.
Hatley, C. L., Macmahon, J. A., 1980. Spider community organization: seasonal variation and the role of vegetation architecture. Environ. Entomol. 9, 632-639.
Hartley, M. J., 2002. Rationale and methods for conserving biodiversity in plantation forests. For. Ecol. Manage. 155, 81-95.
Heck, K. L. J., G. Van Belle, Simberloff. D., 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56, 1459-1461.
Hobbs, R. J., Norton, D. A., 1996. Towards a conceptual framework for restoration ecology. Restoration. Ecol. 4, 93-110.
Holst, T., Mayer, H., Schindler, D., 2004. Microclimate within beech stands. Part II. Thermal conditions. Eur. J. For. Res. 123, 13-28.
Homyack, J. A., Harrison, D. J., Krohn, W. B., 2005. Long-term effects of precommercial thinning on small mammals in northern Maine. For. Ecol. Manage. 205, 43-57.
Höfer, H., Brescovit, A. D., 2001. Spider and guild structure of a Netropical spider assemblage (Araneae) from Reserva Duck, Amazonas, Brazil. Andrias. 15, 99-119.
Hsieh, Y. L., Lin, Y. S., Tso, I. M., 2003. Ground spider diversity in the Kenting uplifted coral reef forest, Taiwan: a comparison between habitats receivieng various disturbances. Biodivers. Coserv. 12, 2173-2194.
Huang, P. S., Tso, I. M., Lin, H. C., Lin, L. K., Lin, C. P., 2011. Effects of thinning on spider diversity of an East Asian subtropical plantation forest. Zool. Stud. 50, 705-717.
Igarashi, T., Kiyono, Y., 2008. The potential of hinoki (Chamaecyparis obtusa [Sieb. Et Zucc.]) endlicher plantation forests for the restoration of the original plant community in Japan. For. Ecol. Manage. 255, 183-192.
Ito, S., Nakagawa, M., Buckley, G. P., Nogami, K., 2003. Species richness in sugi (Cryptomeria japonica D. Don) plantations in southeastern Kyushu, Japan: the effects of stand type and age on understory trees and shrubs. J. For. Res. 8, 49-57.
Kaoru, M., Shigho, S. A., Hiroaki, M., 2002. Species diversity of longhorn beetles in humid warm temperate forests: the impact of forest management practices on old-growth forest species in southwestern Japan. Biodivers. Conserv. 11, 1919–1937.
Krebs, C. J., 1989. Ecological Methodology. Harper Collins Publishers, , New York, USA. 620 pp.
Kerr, G., 1999. The use of silvicultural systems to enhance the biological diversity of plantation forests in Britain. Forestry. 72, 191-205.
Lefèvre, F., 2004. Human impacts on forest genetic resources in the temperate zone: an updated review. For. Ecol. Manage. 197, 257-271.
Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau M., Conzalez, A., 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601-613.
Lindenmayer, D. B., 1999. Future directions for biodiversity conservation in managed forest: indicator species, impact studies and monitoring programs. For. Ecol. Manage. 115, 277-287.
Maeto, K., Sato, S., Miyata, H., 2002. Species diversity of longhorn beetles in humid warm-temperate forests: the impact of forest management practices on old-growth forest species in southwestern Japan. Biodivers. Conserv. 11, 1919-1937.
Maetoa, K., Satob, S., 2004. Impacts of forestry on ant species richness and composition in warm-temperate forests of Japan. For. Ecol. Manage. 187, 213–223.
Magura, T., Horváth, R., Tóthmérész, B., 2010. Effect of urbanization on ground-dwelling spiders in forest patches, in Hungary. Landscape. Ecol. 25, 621-629.
Maleque, M. A., Ishii, H. T., Maeto, K., Taniguchi, S., 2007a. Line thinning enhances diversity of Coleoptera in overstocked Cryptomeria japonica plantations in central Japan. Arthropod-Plant. Inte. 1, 175-185.
Maleque, M. A., Ishii, H. T., Maeto, K., Taniguchi, S., 2007b. Line thinning fosters the abundance and diversity of understory Hymenoptera (Insecta) in Japanese cedar (Cryptomeria japonica D. Don) plantations. J. For. Res. 12, 14-23.
Marañón, T., Ajbilou, R., Ojeda, F., Arroyo, J., 1999. Biodiversity of woody species in oak woodlands of southern Spain and northern Morocco. For. Ecol. Manage. 115, 147—156.
Marra, J. L., Edmonds, R. L., 2005. Soil arthropod responses to different patch types in a mixed-conifer forest of the Sierra Nevada. For. Sci. 51, 255-265.
Montaña, E. D. L., Rey-Benayas, J. M., Carrascal, L. M., 2006. Response of bird communities to silvicultural thinning of Mediterranean maquis. J. Appl. Ecol. 43, 651-659.
Niemelä, J., Haila, Y., Punttila, P., 1996. The importance of small-scale heterogeneity in boreal forests: variation in diversity in forest-floor invertebrates across the succession gradient. Ecography 19, 352–368.
Nyffeler, M., 2000. Ecological impact of spider predation: a critical assessment of Bristowe’s and Turnbull’s estimates. Bull. Br. Arachnol. Soc. 11, 367-373.
Oheimb, G.v., Westphal, C., Tempel, H., Härdtle,W., 2005. Structural pattern of a near-natural beech forest (Fagus sylvatica) (Serrahn, North-east Germany). For. Ecol. Manage. 212, 253–263.
Ohsawa, M., 2004. Species richness of Cerambycidae in larch plantations and natural broad-leaved forests of the central mountainous region of Japan. For. Ecol. Manage. 189, 375-385.
Ohsawa, M., 2005. Species richness and composition of Curculionidae (Coleoptera) in a conifer plantation, secondary forest, and old-growth forest in the central mountainous region of Japan. Ecol. Res. 20, 632-645.
Ohsawa, M., Nagaike, T., 2006. Influence of forest types and effects of forestry activities on species richness and composition of Chrysomelidae in the central mountainous region of Japan. Biodivers. Conserv. 15, 1179-1191.
Ohsawa, M., 2007. The role of isolated old oak trees in maintaining beetle diversity within larch plantations in the central mountainous region of Japan. For. Ecol. Manage. 250, 215-226.
Oxbrough, A. G., Gittings, T., O’Halloran, J., Giller, P. S., Smith, G. F., 2005. Structural indicators of spider communities across the forest plantation cycle. For. Ecol. Manage. 212, 171-183.
Pajunen, T., Haila, Y., Halme, E., Niemelä, J., Punttila, P., 1995. Ground-dwelling spiders (Arachnida, Araneae) in fragmented old forests and surrounding managed forests in southern Finland. Ecography 18, 62-72.
Pearce, J. L., Venier, L. A., Eccles, G., Pedlar, J., McKenney, D., 2004. Influence of habitat and microhabitat on epigeal spider (Araneae) assemblages in four stand types. Biodivers. Conserv. 13, 1305-1334.
Pinkus-Rendón, M. A., León-Cortés, J. L., Ibarra-Núñez, G., 2006. Spider diversity in tropical habitat gradient in Chiapas, Mexico. Divers. Distrib. 12, 61-69.
Schmidt, M., H.,Roschewitz, I., Thies, C., Tscharntke, T., 2005. Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J. Appl. Ecol. 42, 281-287.
Schmidt, M. H., Tscharntke, T., 2005. Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. J. Biogeogr. 32, 467-473.
Schuldt, A., Fahrenholz, N., Brauns, M., Migge-Kleian, S., Platner, C., Schaefer, M., 2008. Communities of ground-living spiders in deciduous forests: does tree species diversity matter? Biodivers. Conserv. 17, 1267-1284.
Smith, D. M., 1986. The Practice of Silviculture. 8th ed., John Wiley and Sons, Inc., New York. 527pp.
Son, Y., Lee, Y. Y., Jun, Y. C., Kim, Z. S., 2004. Light availability and understory vegetation four years after thinning in a Larix leptolepis plantation of central Korea. J. For. Res. 9, 133-139.
Taki, H., Inoue, T., Tanaka, H., Makihara, H., Sueyoshi, M., Isono, M., Okabe, K., 2010. Responses of community structure, diversity, and abundance of understory plants and insect assemblages to thinning in plantations. For. Ecol. Manage. 259, 607-613.
Thomas, S., Halpern, C. B., Falk, D. A., Liguori, D. A., Austin, K. A., 1999. Plant diversity in managed forests: understory responses to thinning and fertilization. Ecol. Appl. 9, 864-879.
Tim, M. Z., Mechthild, R., 2008. Influence of environmental parameters on small-scale distribution of soil-dwelling spiders in forests: What makes the difference, tree species or microhabitat? For. Ecol. Manage. 255, 738–752.
Topping, C. J., 1999. An individual-based model for dispersive spiders in agroecosystems: simulations of the effects of landscape structure. J. Arachnol. 27, 378–386.
Topping, C. J., Sunderland, K. D., 1994. A spatial population dynamics model for Lepthyphantes tenuis (Araneae: Linyphiidae) with some simulations of the spatial and temporal effects of farming operations and land-use. Agric. Ecosyst. Environ. 48, 203–217.
Tsai, Z. I., Huang, P. S., Tso, I. M., 2006. Habitat management by aboriginals promotes high spider diversity on an Asian tropical island. Ecography. 29, 84-94.
Uetz, G. W., Halaj, J., Cady, A. B., 1999. Guild structure of spiders in major crops. J. Arachnol. 27, 270-280.
Uetz, G. W., 1975. Temporal and spatial variation in species diveristy of wandering spider (Araneae) in deciduous forest litter. Environ. Entomol. 4, 719-724.
Waltz, A. E. M., Covington, W. W., 2004. Ecological restoration treatments increase butterfly richness and abundance: mechanisms of response. Restoration. Ecol. 12, 85-96.
Wang, S. Y., Lin, C. J., Chiu, C. M., 2003. Effects of thinning and pruning on knots and lumber recovery of Taiwania (Taiwania cryptomerioides) planted in the Liu-Kwei area. J. Wood. Sci. 49, 444-449.
Wang, S. Y., Ko, C. Y., 1998. Dynamic modulus of elasticity and bending properties of large beams of Taiwan-grown Japanese cedar from different plantation spacing sites. J. Wood. Sci. 44, 62-68.
Weng, S. H., Kuo, S. R., Guan, B. T., Chang, T. Y., Hsu, H. W., Shen, C. W., 2007. Microclimatic responses to different thinning intensities in Japanese cedar plantations of northern Taiwan. For. Ecol. Manage. 241, 91-100.
Wise, D. H., 1993. Spiders in Ecological Webs. Cambridge University Press, 328 pp.
Wise, D.H., Snyder, W. E., Tuntibunpakul, P., 1999. Spiders in decomposition food webs of agroecosystems: theory and evidence. J. Arachnol. 27, 363-370.
Whitehouse, M. E. A., Shochat, E., Shackak, M., Lubin, Y., 2002. The influence of scale and patchiness on spider diversity in a semi-arid environment. Ecography. 25, 395-404.
World Resource Institute. 1998. World Resource 1998-1999. Oxford University Press, Oxford, 369 pp.
Yuan. H. W., Ding, T. S., Hsieh. H. I., 2005. Short-term responses of animal communities to thinning in a Cyptomeria Japonica (Taxodiaceae) plantation in Taiwan. Zool. Stud. 44, 393-402.
Zausen, G. L., Kolb, T. E., Bailey, J. D., Wagner, M. R., 2005. Long-term impacts of stand management on ponderosa pine physiology and bark beetle abundance in northern Arizona: A replicated landscape study. For. Ecol. Manage. 218, 291-305.
Ziesche, T. M., Roth, M., 2008. Influence of environmental parameters on the small-scale distribution of soil-dwelling spiders in forests: what makes the difference, tree species or microhabitat? For. Ecol. Manage. 255, 738-752.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 劉惠卿,2009,〈電視報導新聞議題之政黨偏差研究--以TVBS-N與SET-N報導312維新館事件為例〉,《傳播與管理研究》9(1):33-64。
2. 劉惠卿,2009,〈電視報導新聞議題之政黨偏差研究--以TVBS-N與SET-N報導312維新館事件為例〉,《傳播與管理研究》9(1):33-64。
3. 劉惠卿,2009,〈電視報導新聞議題之政黨偏差研究--以TVBS-N與SET-N報導312維新館事件為例〉,《傳播與管理研究》9(1):33-64。
4. 劉正山,2009,〈2008年總統大選競選期間政黨支持者選擇性接觸媒體傾向的分析〉,《選舉研究》16(2):51–70。
5. 劉正山,2009,〈2008年總統大選競選期間政黨支持者選擇性接觸媒體傾向的分析〉,《選舉研究》16(2):51–70。
6. 劉正山,2009,〈2008年總統大選競選期間政黨支持者選擇性接觸媒體傾向的分析〉,《選舉研究》16(2):51–70。
7. 劉正山,2009,〈2008年總統大選競選期間政黨支持者選擇性接觸媒體傾向的分析〉,《選舉研究》16(2):51–70。
8. 黃國敏,2005,〈政策民意與施政滿意度調查之探討:苗栗縣政府個案研究〉。《政策研究學報》5:103-144。
9. 黃國敏,2005,〈政策民意與施政滿意度調查之探討:苗栗縣政府個案研究〉。《政策研究學報》5:103-144。
10. 黃國敏,2005,〈政策民意與施政滿意度調查之探討:苗栗縣政府個案研究〉。《政策研究學報》5:103-144。
11. 黃國敏,2005,〈政策民意與施政滿意度調查之探討:苗栗縣政府個案研究〉。《政策研究學報》5:103-144。
12. 彭芸,2002,〈2001年臺灣選民的媒介行為與政治信任〉,《選舉研究》9(2):1-36。
13. 彭芸,2002,〈2001年臺灣選民的媒介行為與政治信任〉,《選舉研究》9(2):1-36。
14. 彭芸,2002,〈2001年臺灣選民的媒介行為與政治信任〉,《選舉研究》9(2):1-36。
15. 彭芸,2002,〈2001年臺灣選民的媒介行為與政治信任〉,《選舉研究》9(2):1-36。