跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 23:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余政德
研究生(外文):Yu, Chen Te
論文名稱:後退火對P3HT:PCBM有機太陽能電池物理特性的影響
論文名稱(外文):Effects of Post-Annealing on the Physical Properties of P3HT:PCBM Polymer Solar Cells
指導教授:簡世森
指導教授(外文):Forest Shin-Sen Chien
口試委員:簡世森裴靜偉林宗吾
口試委員(外文):Forest Shin-Sen ChienZingway PeiTsung-Wu Lin
口試日期:2012-06-26
學位類別:碩士
校院名稱:東海大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:59
中文關鍵詞:有機太陽能電池
外文關鍵詞:Organic Solar cells
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1071
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本實驗是研究P3HT:PCBM異質結構有機太陽能電池經由熱退火後物理特性的改變,其結構為:ITO/PEDOT:PSS/P3HT:PCBM/Al。本實驗中觀察到,經由150oC後退火可使得P3HT:PCBM達到最高的光電轉換效率。本實驗透過X光繞射光譜中觀察150oC熱退火會使P3HT結晶變好,而從原子力顯微鏡觀察到P3HT:PCBM主動層經由熱退火後造成其表面粗糙度增加,並且可由相位影像中觀察到有較多P3HT:PCBM相分離現象,而從UV-Vis穿透光譜發現P3HT:PCBM主動層經由150oC熱退火後使P3HT:PCBM產生相分離使其有較大的吸收值。
從熱退火後的P3HT:PCBM太陽能電池暗電流曲線中發現其有較少的缺陷,使其漏電流下降而提升二極體特性。並發現在經過後退火處理後太陽能電池短路電流上升,其可歸因於較佳的相分離使Donor/Acceptor接面增加而提高自由電子產生的機會,且退火可使P3HT鏈長增加與堆疊變好幫助電洞的傳導。除此之外,太陽能電池開路電壓隨著後退火溫度上升的趨勢,可歸咎於太陽能電池漏電流降低(並聯電阻增加)及P3HT及PCBM濃度在主動層材料中有所變化所造成。不但如此,本實驗在電容對電壓、頻率的量測發現太陽能電池經由退火後可減少其缺陷,而使得電容值在順偏壓時下降,而逆偏壓時則上升。透過Nyquist阻抗頻譜及等效電路模擬可發現經由熱退火後可降低其漏電。由本實驗中可發現,經由熱退火後太陽能電池主動層P3HT:PCBM產生相分離及減少漏電流而增加太陽能電池的短路電流、開路電壓及光電轉換效率。

This research was based on the physical properties of P3HT:PCBM bulk Hetero-junction polymer solar cells after post-annealing treatment. The structure of polymer solar cell was ITO/PEDOT:PSS/P3HT:PCBM/
Al, and the best photovoltaic power conversion efficiency was 3.3% on the 150℃ annealed solar cell. The X-ray diffraction (XRD) showed better crystallization of P3HT after 150℃ annealing. The highest roughness of 150℃ annealed P3HT:PCBM active layer and higher phase contrast were obtained by atomic force microscopy, which were contributed to P3HT and PCBM phase separation. The transmittance spectrum measured by UV-Vis also showed a maximum absorption on the 150℃ annealed P3HT:PCBM active layer.
For 150℃ annealed P3HT:PCBM polymer solar cell, the decrease of dark current indicated less defects in active layer and reduced the leakage current. The short-circuit current density of solar cell increased because of well phase separation of P3HT and PCBM, which provided more donor and acceptor interface after annealing to separate more free electrons. The holes transport ability also enhanced by P3HT chain length increasing after annealing. Furthermore, the open-circuit voltage increased as annealing temperature increasing due to lower leakage current and redistribution of P3HT and PCBM in active layer. This result also consists with higher shunt resistance which was obtained from Photo J-V curve. The capacitance versus bias and frequency mapping showed that reduction of defects in active layer after post-annealing. From the impedance spectrum and equivalent circuit fitting results, the leakage current in solar cell was decreased after 150℃ annealing.
The photovoltaic performance of P3HT:PCBM solar cell was improved by 150℃ annealing had been demonstrated in this study. The short-circuit current density, open-circuit voltage and power conversion efficiency of solar cell were enhanced due to the annealing trigged better phase separation of P3HT and PCBM and crystallization of P3HT.

Chapter1 簡介
1.1 前言 1
1.2 研究背景
1.3 有機太陽能電池的優點
1.4 文獻回顧
1.5 研究動機
Chapter 2 有機太陽能電池
2.1 太陽光譜與能量
2.2 有機太陽能電池的種類
2.3 實驗材料
2.4 P3HT:PCBM異質結構太陽能電池工作原理
2.5太陽能電池等效電路
2.6 太陽能電池特性曲線
Chapter 3 實驗方法
3.1 實驗構想
3.2 製備儀器介紹
3.3 實驗步驟
3.3.1 藥品配置
3.3.2元件製作
3.4實驗儀器介紹與量測方法
Chapter 4 實驗結果與討論
4.1 實驗I:
4.2 實驗II:
Chapter 5 結論
參考文獻

[1] R. W. Miles, G. Zoppi, and I. Forbes , Materialstoday 10, 11 (2007).
[2] F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. Philips Chen, and W. C. Chen, IEEE Electron Device Lett 30, 7 (2009).
[3] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva,B. Stuhn, P. Schilinsky, C. Waldauf, C. J.Brabec, Adv. Funct Mater. 15, 1193-1196 (2005).
[4] G. Li, V. Shrotria, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, nature materials 4,864-868(2005)
[5] H. Kallmann, and M. Pope, J. Chem. Phys. 30, 585 (1959)
[6] B. Yang, Y. Yuan, P. Sharma, S. Poddar, R. Korlacki, S. Ducharme, A. Gruverman, R. Saraf, and J. Huang, Adv. Mater. 24, 1455-1460 (2012).
[7] G. Yu, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789-1791 (1995).
[8] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 ( 2007).
[9] 黃俊榮,以掃描探針研究為區電荷轉移行為/東海大學碩士論文, (2010)
[10] T. M. Clarke, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, and J. R. Durrant, Adv. Funct. Mater. 18, 4029–4035 (2008).
[11] T. Erb, U. Zhokhavets, H. Hoppe, G. Gobsch, M. Al-Ibrahim, and O. Ambacher, Thin Solid Films 511-512, 483-485 (2006)
[12] G. G. Belmonte, P. P. Boix, J. Bisquert, M. Sessolo, and H. J. Bolink, Organic Electronics 9, 847 (2008).
[13] S. H. Kim, K. H. Choi, H. M. Lee, D. H. Hwang, L. M. Do, H. Y. Chu, and T. Zyung, J. A. P. 87,882-888 (2000)
[14] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R.Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C.-S. Ha, M. Ree, Nat. Mater. 5, 197 (2006).
[15] T. Erb, S. Raleva, U. Zhokhavets, G. Gobsch, B. Stuhn, M. Spode, O.Ambacher, Thin Solid Films 450, 97 (2004).
[16] D. Chirvase, J. Parisi, J.C. Hummelen, V. Dyakonov, Nanotechnology 15, 1317 (2004).
[17] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Adv. Funct. Mater. 14, 1005 (2004).
[18] X. Yang, J. K. J. V. Duren, R. A. J. Janssen, M. A. J. Michels, J. Loos, Macromolecules 37,2151(2004).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top