跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/24 06:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪欣怡
研究生(外文):Hung, Hsinyi
論文名稱:馬鞭草正丁醇萃取物及純化物質之抗氧化及醣解酵素抑制作用
論文名稱(外文):Antioxidant And Glycosidase Inhibitory Activity Of n-butanol Extract And Isolated Components From Verbena Officinalis L.
指導教授:蘇正德蘇正德引用關係
指導教授(外文):Su, Jengde
口試委員:王進崑江文德蔡正宗盧錫祺
口試委員(外文):Wang, ChinkunChiang, WendeeTsai, TsunchungLu, Hsichi
口試日期:2012-07-19
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:139
中文關鍵詞:馬鞭草糖尿病抗氧化α-澱粉酶α-葡萄糖苷酶
外文關鍵詞:Verbena officinalis L.diabetesantioxidantα-amylaseα-glucosidase
相關次數:
  • 被引用被引用:7
  • 點閱點閱:802
  • 評分評分:
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:0
糖尿病(diabetes mellitus)與胰島素分泌不足或作用缺失相關。高血糖使體內產生過多活性氧,造成氧化壓力上升及相關併發症發生,抗氧化物質對於活性氧所引發疾病之調控中扮演重要角色。而醣解酵素不但參與人體消化作用,也影響許多代謝疾病如糖尿病的產生,醣解酵素中以α-澱粉酶(α-amylase)及α-葡萄醣苷酶(α-glucosidase)最為重要。中藥材馬鞭草科(Verbenaceae)植物馬鞭草(Verbena officinalis L.),文獻證實具有抗氧化、抗發炎、保護神經、止痛、抗真菌等生理功能,但對於血糖調控之研究卻相當少,因此本研究探討馬鞭草之抗氧化性並評估其對醣解酵素之抑制作用,期望馬鞭草具醣解酵素抑制作用進而對糖尿病具改善功效。馬鞭草乾燥全草先以甲醇萃取,再依序利用水與正己烷、乙酸乙酯及正丁醇等溶劑進行液液萃取,並以抗氧化及醣解酵素抑制活性為篩選平台,進行活性成分之分離、純化及結構鑑定。結果得知馬鞭草正丁醇萃取物的抗氧化及醣解酵素抑制作用較佳,此萃取物利用層析膠體(Amberlite XAD-7及Cosmosil 75 C18-OPN)進行區分,再以HPLC純化出5種具抗氧化及醣解酵素抑制活性之純化物質,並利用MS、UV及1H、13C-NMR鑑定結構。目前已鑑定出5種苯乙醇苷類化合物(phenyl ethanoid glycosides),分別為isoverbascoside (1)、verbascoside (2)、eukovoside (3) 、eukovoside isomer (4) 及β-hydroxyverbascoside (5)。TEAC法檢測的抗氧化性以isoverbascoside (1)最佳,醣解酵素抑制活性上,以isoverbascoside (1)和verbascoside (2)最佳,對α-amylase抑制率為53.71及55.37%,對α-glucosidase抑制率為59.90及48.40%。
Diabetes is associated with deficiencies in insulin secretion or action. Excess reactive oxygen species are built up with chronic hyperglycemia, and are subsequently contributing to oxidative stress and complications. Antioxidants have important roles in disorders involving oxidative stress. Glycosidases are not only involved in human digestion, but also affect the generation of many metabolic diseases such as diabetes, the most important glycosidases are α-amylase and α-glucosidase. Verbena officinalis L., an herbaceous plant of Verbenaceae family, has long been used in traditional Chinese medicine. Previous studies have demonstrated that V. officinalis L. have antioxidant, anti-inflammatory, neuroprotective, analgesic and antibacterial activities. However, possible roles of V. officinalis L.in hypoglycemic regulation have not yet been explored. In the present study, antioxidative and glycosidase inhibitory components of V. officinalis L. were identified, and their hypoglycemic activities were then investigated.V. officinalis L. was extracted with methanol, and the methanol extracts were extracted by water with n-hexane, ethyl acetate and n-butanol successively. These extracts were analysed for potential health promoting properties including their inhibitory effect on starch digestive enzymes and antioxidant activities. n-butanol extract of V. officinalis L. showed strong antioxidant and inhibitory properties against both α-amylase and α-glucosidase. The extract was further separated successively by Amberlite XAD-7, Comosil 75C18-OPN and reversed HPLC chromatographies to obtain five components. The isolated components were identified five phenylethanoid glycosides as isoverbascoside (1), verbascoside (2), eukovoside (3), eukovoside isomer (4) and β-hydroxyverbascoside (5) by MS, UV and 1H, 13C-NMR anlyses. Among the five isolated components, isoverbascoside (1) showed the strongest antioxidant activity by trolox equivalent antioxidant capacity (TEAC). And the isolated components isoverbascoside (1), verbascoside (2) gave the highest inhibition rates against α-amylase, which were 53.71 and 55.37 % respectively. The isolated component isoverbascoside (1) and verbascoside (2) were most efficient in inhibiting α-glucosidase, with inhibition rates of 59.90 and 48.40 %.

摘要--------------------------------------------------------------------------------1
英文摘要-----------------------------------------------------------------------------3
壹、前言-----------------------------------------------------------------------------5
貳、文獻回顧-------------------------------------------------------------------------6
一、馬鞭草---------------------------------------------------------------------------6
(一)馬鞭草之介紹---------------------------------------------------------------------6
(二)馬鞭草之傳統功效------------------------------------------------------------------7
(三)馬鞭草之生理活性------------------------------------------------------------------7
二、自由基與活性氧-------------------------------------------------------------------12
(一)自由基與活性氧的種類-------------------------------------------------------------12
(二)自由基與活性氧的來源-------------------------------------------------------------13
(三)自由基與活性氧對生物體的影響------------------------------------------------------14
三、脂質氧化作用--------------------------------------------------------------------16
四、抗氧化劑與抗氧化劑作用機制--------------------------------------------------------20
五、天然抗氧化物質-------------------------------------------------------------------23
六、人工合成抗氧化劑-----------------------------------------------------------------36
七、自由基與糖尿病之關聯 -------------------------------------------------------------39
八、糖尿病--------------------------------------------------------------------------39
九、糖尿病併發症---------------------------------------------------------------------45
十、糖尿病之治療---------------------------------------------------------------------46
十一、胰島素-------------------------------------------------------------------------50
(一)胰島素作用-----------------------------------------------------------------------50
(二)胰島素作用於細胞------------------------------------------------------------------52
(三)胰島素細胞層面之傳訊--------------------------------------------------------------52
(四)胰島素阻抗性---------------------------------------------------------------------54
十二、高血糖與醣解酵素----------------------------------------------------------------54
(一)α-澱粉酶(α-amylase)-------------------------------------------------------------54
(二)α-葡萄糖苷酶(α-glucosidase)------------------------------------------------------55
十三、醣解酵素抑制劑之作用-------------------------------------------------------------55
参、研究目的與實驗流程----------------------------------------------------------------57
一、研究目的-------------------------------------------------------------------------57
二、實驗流程-------------------------------------------------------------------------58
肆、材料與方法-----------------------------------------------------------------------59
一、實驗材料-------------------------------------------------------------------------59
二、實驗試劑與溶劑--------------------------------------------------------------------59
(1)醣解酵素抑制試驗之試藥--------------------------------------------------------------59
(2)抗氧化試驗之試藥-------------------------------------------------------------------60
(3)純化成分層析及光譜分析之溶劑---------------------------------------------------------61
三、實驗儀器設備----------------------------------------------------------------------61
四、實驗方法--------------------------------------------------------------------------63
(一)樣品萃取--------------------------------------------------------------------------63
(二)水分含量測定----------------------------------------------------------------------65
(三)總酚含量測定----------------------------------------------------------------------65
(四)總類黃酮含量測定-------------------------------------------------------------------66
(五)DPPH自由基清除能力試驗-------------------------------------------------------------66
(六)硫氰酸鐵法測定---------------------------------------------------------------------67
(七)總抗氧化能力測定 -----------------------------------------------------------------68
(八)α-amylase抑制作用測定------------------------------------------------------------69
(九)α-glucosidase抑制作用測定--------------------------------------------------------70
(十)馬鞭草抗氧化及醣解酵素抑制成分之萃取、分離及純化--------------------------------------71
(十一)統計分析-----------------------------------------------------------------------75
伍、結果與討論-----------------------------------------------------------------------77
一、馬鞭草萃取物之產率----------------------------------------------------------------77
二、馬鞭草萃取物之總酚含量-------------------------------------------------------------77
三、馬鞭草萃取物之總類黃酮含量---------------------------------------------------------79
四、馬鞭草萃取物之DPPH自由基清除能力----------------------------------------------------79
五、馬鞭草萃取物之醣解酵素抑制活性------------------------------------------------------79
六、馬鞭草正丁醇萃取物抗氧化及醣解酵素抑制活性成分之分離純---------------------------------82
1.馬鞭草正丁醇萃取物XAD-7液相管柱層析--------------------------------------------------82
2.馬鞭草正丁醇萃取物區分(C+D)之的一次Comosil 75 C18-OPN液相管柱層析----------------------86
3.馬鞭草正丁醇萃取物區分(Ⅰ+Ⅱ)之的二次Comosil 75 C18-OPN液相管柱層析--------------------90
4.馬鞭草正丁醇萃取物區分a 之HPLC分析及製備----------------------------------------------94
5.馬鞭草正丁醇萃取物區分a-1、a-3、a-5及a-6 之HPLC分析及製備------------------------------97
6.馬鞭草正丁醇萃取物純化物質之結構鑑定--------------------------------------------------101
7.馬鞭草正丁醇萃取物純化物質之抗氧化及醣解酵素抑制作用------------------------------------122
陸、結論 ----------------------------------------------------------------------------125
柒、參考文獻 -------------------------------------------------------------------------127
捌、附表-----------------------------------------------------------------------------138
圖目錄
圖 2-1、馬鞭草(Verbena officinalis L.)之圖片。------------------------------------------6
圖 2-2、氧分子之氧化還原及激發狀態(遠藤和淺田,1992)。-----------------------------------14
圖 2-3、脂質自氧化連鎖反應(Nawar,1985)。----------------------------------------------18
圖 2-4、油脂自氧化的反應階段。-----------------------------------------------------------18
圖 2-5、不飽和脂肪酸自氧化反應中最初氫過氧化物的形成。--------------------------------------19
圖 2-6、自由基清除劑之抗氧化作用機制。----------------------------------------------------21
圖 2-7、不同型態抗壞血酸與自由基之反應。--------------------------------------------------24
圖 2-8、類黃酮之基本結構圖。-------------------------------------------------------------28
圖 2-9、常用之人工合成抗氧化劑。---------------------------------------------------------38
圖 2-10、口服抗高糖藥物之作用位置。------------------------------------------------------48
圖 2-11、胰島素之代謝調控。-------------------------------------------------------------51
圖 2-12、胰島素之傳訊路徑。-------------------------------------------------------------53
圖 2-13、Acarbose之結構。--------------------------------------------------------------56
圖 2-14、Miglitol之結構。--------------------------------------------------------------56
圖 3-1、實驗流程圖。--------------------------------------------------------------------58
圖 4-1、馬鞭草各種溶劑萃取物之製備。------------------------------------------------------64
圖 4-2、DPPH自由基清除作用之反應式。------------------------------------------------------67
圖 4-3、葡萄糖之呈色反應。---------------------------------------------------------------70
圖 4-4、馬鞭草正丁醇萃取物抗氧化及醣解酵素抑制成分之純化流程圖。------------------------------76
圖 5-1、馬鞭草各種萃取物之DPPH自由基清除能力。 --------------------------------------------80
圖 5-2、馬鞭草不同溶劑萃取物對α-amylase之抑制率。------------------------------------------80
圖 5-3、馬鞭草不同溶劑萃取物對α-glucosudase之抑制率。--------------------------------------81
圖 5-4、馬鞭草正丁醇萃取物之XAD-7液相管柱層析圖。------------------------------------------83
圖 5-5、馬鞭草正丁醇萃取物經XAD-7 膠體液相管柱層析各沖提區分之抗氧化性。----------------------84
圖 5-6、馬鞭草正丁醇萃取物經XAD-7 膠體液相管柱層析各沖提區分之DPPH自由基清除能力。-------------84
圖 5-7、馬鞭草正丁醇萃取物經XAD-7液相管柱層析區分物之α-amylase 及α-glucosidase 抑制活性。-----85
圖 5-8、馬鞭草正丁醇萃取物區分(C+D)之Cosmosil 75 C18-OPN液相管柱層析圖。--------------------87
圖 5-9、馬鞭草正丁醇萃取物區分(C+D)經Cosmosil 75 C18-OPN液相管柱層析後各沖提區分之總抗氧化力。-88
圖5-10、馬鞭草正丁醇萃取物區分(C+D)經第一次Cosmosil 75 C18-OPN液相管柱層析後各沖提區分
之α-amylase 及α-glucosidase 抑制性。----------------------------------------------------89
圖 5-11、馬鞭草正丁醇萃取物區分(Ⅰ+Ⅱ)經第二次Cosmosil 75 C18-OPN液相層析管柱層析圖。--------91
圖 5-12、馬鞭草正丁醇萃取物區分(Ⅰ+Ⅱ)經第二次Cosmosil 75 C18-OPN液相管柱層析後各沖提區
分之總抗氧化力。-------------------------------------------------------------------------92
圖 5-13、馬鞭草正丁純粹取物區分(Ⅰ+Ⅱ)經第二次Cosmosil 75C18-OPN液相管柱層析後各沖堤區分
之α-amylase及α-glucosidase 抑制活性。----------------------------------------------------93
圖 5-14、馬鞭草正丁醇萃取物區分a 之分析型HPLC 圖。------------------------------------------95
圖 5-15、馬鞭草正丁醇萃取物區分a經HPLC層析後各沖提區分之總抗氧化力。---------------------------95
圖 5-16、馬鞭草正丁醇萃取物區分a經HPLC層析後各沖提區分之α-amylase 及α-glucosidase抑制活性。----96
圖 5-17、馬鞭草正丁醇萃取物區分a-1 之分析型HPLC 圖。----------------------------------------98
圖 5-18、馬鞭草正丁醇萃取物區分a-3 之分析型HPLC 圖。----------------------------------------98
圖 5-19、馬鞭草正丁醇萃取物區分a-5 之分析型HPLC 圖。----------------------------------------98
圖 5-20、馬鞭草正丁醇萃取物區分a-6 之分析型HPLC 圖。----------------------------------------99
圖 5-21、馬鞭草正丁醇萃取物純化物質 1 之分析型HPLC 圖。-------------------------------------99
圖 5-22、馬鞭草正丁醇萃取物純化物質 2 之分析型HPLC 圖。-------------------------------------99
圖 5-23、馬鞭草正丁醇萃取物純化物質 3 之分析型HPLC 圖。------------------------------------100
圖 5-24、馬鞭草正丁醇萃取物純化物質 4 之分析型HPLC 圖。------------------------------------100
圖 5-25、馬鞭草正丁醇萃取物純化物質 5 之分析型HPLC 圖。------------------------------------100
圖 5-26、馬鞭草正丁醇萃取物純化物質2之紫外-可見光光譜。------------------------------------103
圖 5-27、馬鞭草正丁醇萃取物純化物質2之1H核磁共振光譜圖。------------------------------------104
圖 5-28、馬鞭草正丁醇萃取物純化物質2之13C-核磁共振光譜圖。----------------------------------105
圖 5-29、馬鞭草正丁醇萃取物純化物質1之紫外-可見光光譜。------------------------------------107
圖 5-30、馬鞭草正丁醇萃取物純化物質1之1H-核磁共振光譜圖。-----------------------------------108
圖 5-31、馬鞭草正丁醇萃取物純化物質1之13C-核磁共振光譜圖。----------------------------------109
圖 5-32、馬鞭草正丁醇萃取物純化物質3之紫外-可見光光譜。------------------------------------111
圖 5-33、馬鞭草正丁醇萃取物純化物質3之1H-核磁共振光譜圖。-----------------------------------112
圖 5-34、馬鞭草正丁醇萃取物純化物質3之13C-核磁共振光譜圖。----------------------------------113
圖 5-35、馬鞭草正丁醇萃取物純化物質4之紫外-可見光光譜。------------------------------------115
圖 5-36、馬鞭草正丁醇萃取物純化物質4之1H -核磁共振光譜圖。----------------------------------116
圖 5-37、馬鞭草正丁醇萃取物純化物質4之13C -核磁共振光譜圖。---------------------------------117
圖 5-38、馬鞭草正丁醇萃取物純化物質5之紫外-可見光光譜圖。-----------------------------------119
圖 5-39、馬鞭草正丁醇萃取物純化物質5之1H -核磁共振光譜圖。-----------------------------------120
圖 5-40、馬鞭草正丁醇萃取物純化物質5之13C -核磁共振光譜圖。----------------------------------121
圖 5-41、馬鞭草正丁醇萃取物純化物質之總抗氧化力。-------------------------------------------123
圖 5-42、馬鞭草正丁醇萃取物純化物質之α-amylase及α-glucosidase
之抑制活性。----------------------------------------------------------------------------124
表目錄
表 2-1、活性氧族群-----------------------------------------------------------------------13
表 2-2、各種自由基的形成及其介入的各種疾病--------------------------------------------------15
表 2-3、類黃酮之抗氧化性------------------------------------------------------------------29
表 2-4、植物來源之抗氧化物質--------------------------------------------------------------32
表 2-5、妊娠性糖尿病篩檢-----------------------------------------------------------------44
表 2-6、口服降血糖藥物-------------------------------------------------------------------49
表 5-1、馬鞭草四種溶劑之萃取物產率---------------------------------------------------------78
表 5-2、馬鞭草各種溶劑萃取物之總多酚、總類黃酮含量-------------------------------------------78
表 5-3、馬鞭草正丁醇萃取物經XAD-7液相層析後各沖提區分之產率----------------------------------83
表 5-4、馬鞭草正丁醇萃取物區分(C+D)經第一次Cosmosil 75 C18-OPN液相層析後各沖提區分之產率------87
表 5-5、馬鞭草正丁醇萃取物區分(Ⅰ+Ⅱ)經第二次Cosmosil 75 C18-OPN液相層析後各沖提區分之產率----91
表 5-6、純化物質1及2之1H及13C-NMR 化學位移 (ppm, CD3OD) ---------------------------------101
表 5-7、馬鞭草正丁醇萃取物五種純化物質之產率-----------------------------------------------123
附目錄
附錄一、沒食子酸之標準曲線---------------------------------------------------------------138
附錄二、檞皮酮之標準曲線-----------------------------------------------------------------138
附錄三、Trolox之標準曲線-----------------------------------------------------------------139
王媗。糖尿病安全手冊 初版。林鬱文化事業有限公司p47-77。(2001)。
王瑄閔。甘草中具抑制醣解酵素活性萃取物及純化物質之調節葡萄糖恆定作用。東海大學食品科學研究所 碩士論文。(2011)。
古為榮,喬長誠,蘇正德。咖啡果肉抗氧化及揮發性成分之研究。東海大學食品科學研究所 碩士論文。(2006)。
本田正志 糖层病診斷療法 初版三刷。信宏出版社。(2004)。
行政院衛生署http://www.doh.gov.tw/CHT2006/DM/DM2_p01.aspx?class_no=25&level_no=1&doc_no=84788公布資料檔案/100主要死因分析。(2012)。
朱婉兒、樓亞洲、朱姿樺、林美吟、蘇聖棋。胰島素增敏劑-thiazolidinediones藥物之臨床使用及安全性探討。藥學雜誌。(2009)。
朱彥華和周于嵐。食品工業。06-15。(2011)。
米井嘉一。這樣生活,讓你不變老延遲老化就從避免醣化開始。樂果文化世界股份有限公司。(2010)。
李旻。綠藻中α-glucosidase抑制物之分離與特性鑑定。靜宜大學 食品營養學系碩士論文。(2006)。
李忌、周红、鄭耘、林炳珍、鄭榮梁、賈忠健。天然抗氧化劑isoverbascoside對人類未現癌細胞生長和超微結構的影響。廈門大學學報(自然科學版)05期。(1995)。
李怡慧。白芍熱水萃取物醣解酵素抑制成分之純化及對小鼠肝臟FL83B細胞之葡萄糖恆定調節。東海大學食品科學研究所 碩士論文。(2011)。
巫熒。綠藻水解物對α-葡萄糖苷酶與α-澱粉酶之抑制與活性物質的純化。海洋大學 食品科學系 碩士論文。(2009)。
吳青蓉。黃金銀耳酸性多醣對FL83B小鼠肝臟細胞具胰島素增敏功效。東海大學 食品科學系 碩士論文。(2011)。
林建谷。綠藻萃取物與細胞壁組成之分離、鑑定與抑制糖苷酵素活性。靜宜大學 食品科學系 碩士論文。(2008)。
林宏達。認識糖尿病。台灣糖尿病協會。(2003)。
林書玉。紅豆蔻揮發性及抗氧化成分之研究。東海大學食品科學研究所 碩士論文。(1997)。
林念穎。茜草根正己烷及乙酸乙酯萃取物之抗氧化成分。東海大學食品科學研究所 碩士論文。(2009) 。
林天送。你的生命力-從自由基談起。健康世界雜誌社。(1999)。
林宏達。認識糖尿病。台灣糖尿病協會。(2003)。
郁凱衡。酚類抗氧化劑(上)-合成類。食品資訊。157:34-38。(1999)。
洪裕閔。雷丸抗氧化、螢光成分及揮發性成分之研究。東海大學食品科學研究所 碩士論文。(2001)。
唐孟成、賈之慎、朱祥瑞和呂順霖。春秋桑葉中黃酮類化合物總量及提取方法比較。浙江農業大學學報 22(4): 394-398。(1996)。
徐珊、焦中秀、徐小晶等。馬鞭草醇萃取物對絨毛膜癌JAR細胞增殖及表皮生長因數受體表達的影響。中國藥科大學學報。31:281-284。(2000)。.
徐華娥、袁紅宇、歐甯。馬鞭草醇萃取物小劑量時能顯著增加紫杉醇的抗腫瘤活性。南京醫科大學學報(自然科學版)。10:1275-1278。(2008)。
高馥君,李敏雄。食品保存與抗氧化劑。食品工業。30(12):17-24。(1998)。
郝立智、楊純宜、林興中。第二型糖尿病之診斷和藥物治療趨勢。當代醫學。38(5):368-378。(2011)。
梁佳玟、賴怡君、朱燕華。中草藥對於促發炎細胞激素生成之影響。中華醫誌。15(4): 293-304。(2004)。
陳金滄。馬鞭草水淬取物對四氯化碳誘導大鼠肝損傷之護肝及抗氧化功效評估。大仁科技大學教師研究計畫成果報告。(2009)。
郭柏村。高粱薑乙酸乙酯萃取物之抗氧化及調節血糖作用。東海大學食品科學研究所 碩士論文。(2011) 。
陳佩君。女貞子抗氧化性及揮發性成分之研究。東海大學食品科學研究所 碩士論文。(2003)。
陳銘鴻、 康玉嬋、王佩文。Acarbose應用於第二型糖尿病合併腎衰竭患者之可能禁忌機轉。內科學誌。20:434-439。(2009)。
菅野光男。苦瓜降低血糖值 初版。林鬱文化事業有限公司。(2001)。
湯樹良譯。馬鞭草中促進神經生長因數介導的軸突生長的新成分littorachalcone。國外醫學中醫藥分冊。26:177(2004)。
馮播、徐昌芬。馬鞭草C部位(4'-methylether-scutellarein,4-MS)對人絨毛膜癌細胞增殖的抑制作用。中國腫瘤生物治療雜誌。15:444-447。(2008)。
滿田久輝,安本教傳,岩見公和。抗氧化成分對亞麻油酸之自氧化的影響。營養與糧食。19: 210-214。(1967)。
葉力瑋。蔓荊子抗氧化成分之研究。東海大學食品科學研究所 碩士論文。(2007) 。
遠藤 剛、淺田浩二。活性酸素在生物中之生存、消去、作用。食品工業。5月30日。20-25。(1992)。
鄭芳琪。番石榴葉水萃取物降血糖作用及有效成分分離。國立台灣大學生物資源暨農學院食品科學研究所博士論文。(2009)。
劉錦秀譯。修復身體的黃金7小時。大是文化。(2011)。
樊謙騰。鳳凰花及山竹果殼抗氧化成分與花青素之研究。東海大學食品科學研究所 碩士論文。(1996)。
簡永亮。沙苑子、馬櫻丹花抗氧化成分及沙苑子揮發性成分之研究。東海大學食品科學研究所 碩士論文。(2002)。
蕭蘇萍譯。沿海馬鞭草中1個新的具有促進神經生長因數活性的環烯醚萜糖苷。國外醫學中醫中藥分冊。26:353。(2004)。
鍾玉玲。海巴戟天葉、莖及果實粗萃物的抗氧化活性之比較。嘉南藥理科技大學 生物科技研究所 碩士論文。(2003)。
顏國欽、劉展冏、韓建國、劉冠汝、李嘉展、陳建元、蘇敏昇、馮惠萍、謝秋蘭、饒家麟、梁弘人、林聖敦、江伯源、李政達、盧更煌、周志輝。食品化學。華格納企業股份有限公司。(2007)。
蘇正德、蔡文騰、張基煌、蘇女淳。茶湯與茶渣兒茶酚含量及抗氧化性之調查研究。食品科學18: 234-248。(1991)。
Ali, H., Houghton, P. J., Soumyanath, A. α-Amylase inhibitory activity of some malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of Ethnopharmacology 107: 449–455(2006).
American Diabetes Association (ADA). Standard of medical care in diabetes-2011. Diabetes Care, Supplement 1, 34: S11-S61(2011).
Anguelova, T.; Warthsen, J. Degradation of lycopene, α-carotene, and β-carotene during lipid peroxidation. J. Food Sci. 65: 71-75(2000).
Aruoma, O. I. Antioxidant actions of plant foods: use of oxidative DNA damage as a tool for studying antioxidant efficacy. Free Radic. Res. 30: 419-427(1999).
Aruoma, O. I. Nutrition and health aspects of free radicals and antioxidants. Food Chem. 72: 145-171(1994).
Arnao, M. B.; Cano. A.; Hernadez-Ruiz, J.; Carcia-Canovas, F.; Acosta, M. Inhibition by L-ascorbic acid and other antioxidants of 2,2’-azino-bis(3-ethylbiazoline-6-sulfonic acid)oxidation catalyzed by peroxidase:a new approach for determining total antioxidant status of food. Analy. Biochem. 236: 255-261(1996).
Atef A. El-Hela, Hussein A. Al-Amier, Taghreed A. Ibrahimc. Comparative study of the flavonoids of some Verbena species cultivated in Egypt by using high-performance liquid chromatography coupled with ultraviolet spectroscopy and atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A. 1217: 6388-6393 (2010).
Barry, H.; John, M. C. Free Radicals in Biology and Medicine. Oxford sciense. (1999).
Bate, S.; Swain, E. C. Comparative Biochemistry, Vol. 3, Mason, H. S. and Florkin, M., Eds., Academic Press, New York. 764.(1962).
Bando, N.; Hayashi, H.; Wakamatsu, S.; Inakuma, T.; Miyoshi, M.; Nagao, A.; Yamauchi, R.; Terao, J. Participation of singlet oxygen in ultraviolet-a-induced lipid peroxidation in mouse skin and its inhibition by dietary β-carotene: an ex vivo study. Free Radic Biol Med. 37: 1854-1863(2004).
Bhandari M-R, Nilubon J-A,Hong G, and Kawabata J. α-glucosidase and α-amylase inhibitory activities of Nepalese edicinal herb Pakhanbhed(Bergenia ciliate, Haw). Science Direct, 106: 247252(2008).
Bilia, A.R., Giomi, M., Innocenti, M., Gallori, S., Vincieri, F.F. HPLC–DAD–ESI–MS analysis of the constituents of aqueous preparations of verbena and lemon verbena and evaluation of the antioxidant activity. Journal of Pharmaceutical and Biomedical Analysis 46 : 463–470(2008).
Branen, A. C. Toxicologes and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 52: 59-63(1975).
Bros, W. ; Heller, W. ; Michel, C.; Saran, M. Flavonoids as antioxidants : Determination of radical-scavenging efficiencies. Methods Enzymol. 186: 343-355(1990).
Burton,G. W. Vitamin E: molecular and biological function. Pro. Nutr. Soc. 53: 251-262(1994).
Calvo, M.I., Vilalta , N., Julian, A. S. and Fernandez , M.Anti-inflammatory activity of leaf extract of Verbena officinalis L. Phytomedicine, Vol. 5(6): 465-467(1998).
Calvo, M.I.. Anti-inflammatory and analgesic activity of the topical preparation of Verbena officinalis L. Journal of Ethnopharmacology 107: 380-382 (2006).
Cardinali A, Pati S, Minervini F, D'Antuono I, Linsalata V, Lattanzio V.Verbascoside, isoverbascoside, and their derivatives recovered from olive mill wastewater as possible food antioxidants. J Agric Food Chem. 60(7): 1822-9(2012).
Calvo, M. I., San Julian ,A., Fernandez ,M. Identification of the Major compounds in extracts of Verbena officinalis L.(Verbenaceae) by HPLC with post-column derivatization. Chromatographia Vol.46, No. 5-6(1997).
Campo G, Marchesini J, Bristot L, Monti M, Gambetti S, Pavasini R, Pollina A, Ferrari R. The in vitro effects of verbascoside on human platelet aggregation. J Thromb Thrombolysis. Jun 22 (2012).
Ceriello, A. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 26: 1589-1596(2003).
Chen Rui-Chuan, SU Jin-Hua, Yang Shan-Min, LI Ji, Wang Tian-Jiao, Zhou Hong. Effect of isoverbascoside, a phenylpropanoid glycoside antioxidant, on proliferation and differentiation of human gastric cancer cell. Acta Pharmacol Sin ,23 (11): 997-1001(2002).
Cook, N. C.; Samman, S. Flavonoids: Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem.7: 66-76(1996).
Deepak M,Sukhdev S.Handa. Antiinflammatory activity and composition of extracts of Verbena offcinalis. Phytotherapy Res,14: 463-465(2000).
Deepak M, Handa SS. Antiinflammatory activity and chemical composition of extracts of Verbena officinalis.Phytother. Res. 14: 463-465 (2000).
Dickinson P-J, Carrington A-L, Forst G-S, Boulton A. J. M.Neurovascular disease, antioxidants and glycation in diabetes. Diabetes Metab Res Rev. 18: 260-272(2002).
Duman, B. S., Turkoglu, C., Gunay, D., Cagatay, P., Demiroglu, C., Buyukdevrim, A. The interrelationship between insulin secretion and action in type 2 diabetes mellitus with different degrees of obesity: evidence supporting central obesity. Diabetes Nutr. Metab. 16: 243-250(2003).
E. Casanova & J. M. García-Mina & M. I. Calvo. Antioxidant and antifungal activity of Verbena officinalis L. Leaves. Plant Foods Hum Nutr63: 93–97(2008).
Fang, Y. Z. Free radicals and nutrition. In: Fang, Y. Z.; Zheng, R. L.,(Ed.). Theory and application of free radical biology. Beijing: Scientific Press, 647(2002).
Fernández M. Las plantas en la medicina popular. (navarra 1.Navarra húmeda del noroeste) . Pamplona: Eusko Ikaskuntza(1981).
Fridovich, I. Superoxide radical and superoxide dismutase. Annu. Rev. Biochem. 64: 97-112(1995).
Frandsen, T.P., Svensson, B. Plant α-glucosidases of the glycoside hydrolase family 31. Molecular properties, substrate specificity, reaction mechanism, and comparison with family members of different origin. Plant Molecular Biology 37: 1-13(1998).
Funes, L., Fernandez-Arroyo, S. Laporta, O., Pons ,A., Roche, E., Segura-Carretero , A., Fernandez-Gutierrez , A., Micol , V.Correlation between plasma antioxidant capacity and verbascoside levels in rats after oral administration of lemon verbena extract. Food Chemistry 117: 589–598(2009).
George, K. B.; Lopes, Herbert, M.; Scchulman and Marcelo, H. L. Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim. Biophys. Acta. 1472: 142-152(1999).
Gorkum, R. V.; Bouwman, E. The oxidative drying of alkyd paint catalysed by metal complexes. Coord. Chem. Rev. 249: 1709-1728(2005).
Gutteridge, J. M. Anthracycline toxicity, iron and oxygen radicals, and chelation therapy. J. Lab. Clin. Med. 122: 228-229(1993).
Halliwell, B. and Gutteridge, J. M.C. In“Antioxidants in nutrition, health and disease.” , 90-110(1994).
Halliwell, B.; Murcia, M. A.; Chirico, S.; Aruoma, O. I. Free radicals and antioxidants in food and in vivo: What they do and how they work. Crit. Rev. Food Sci. Nutr. 35: 7-20(1995).
Hernbndez NE,Tereschuk ML,Abdala LR. Antimicrobial activity of the flavonoids in mediciral plants from Taft del Valle (Tucumbn, Argentina). J Ethnopharmacol,73: 317-322(2000).
Horn, R. C.; Vargas, V. M. Antimutagenic activity of extracts of natural substances in the Salmonella/microsome assay. Mutagenesis. 18: 113-118(2003).
Huang, M. T.; Chang, R. L.; Wood, A. W.; Newmark, H. L.; Sayer, J. M.; Yagi, H.; Jerina, D. M.; Conney, A. H. Inhibition of the mutagenicity of bay-egion diol-epoxides of polycyclic aromatic hydrocarbons by tannic acid,hydroxylated anthraquinones and hydroxylated cinnamic acid derivatives. Carcinogenesis. 6: 237-242(1985).
Hudson, B. J. F. Food antioxidants, Elsevierscience Publishing Co. New York. (1990).
IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Some Naturally Occurring and Synthetic Food Components, Furocoumarins and Ultraviolet Radiation. Butylated hydroxytoluene (BHT), International Agency for Research on Cancer, Lyon., 40: 161-206(1986b).
IARC Monographs on the Evaluation of the Carcinogenic Risks of Chemicals to Humans. Some Naturally Occurring and Synthetic Food Components, Furocoumarins and Ultraviolet Radiation. Butylated hydroxyanisole (BHA). International Agency for Research on Cancer, Lyon. 40: 123-159(1986a).
Jacob, R. A. Nutrition, health and antioxidants. INFORM. 11: 1271-1275(1994).
Julkunen-Tiitto R.Phenolic constituents in the leaves of Northern willows: methods for the analysis of certain phenolics. Journals of Agricultural and Food Chemical, 33: 213-217(1985).
Kellogg, E. W. Ⅲ; Fridovich, . Superoxide, hydrogen peroxide and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J. Biol. Chem. 250: 8812-8815(1975).
Kunfeng Duan, Zhi fang Yuan, WeiGuo, Yan Meng, YangCui,Dezhi Kong, Lan tong Zhang, Na Wang.Review. LC–MS / MS determination and pharmacokinetic study of five flavones components after solvent extraction/acid hydrolysis in rat plasma after oral administration of Verbena officinalis L. extract. Journal of Ethnopharmacology 135(2):201–208 (2011).
Larson, R. A. The antioxidants of higher plants. Phytochem. 27: 969-978(1998).
Li Ji, Zhou Hong, Zheng Yun, Ling Bingzheng, Zheng Rongliang, Jia Zhongjian. Effect of natural antioxidant isoverbascoside on the multplication and ultrastructure of human gastric adenocarcinoma cells. Journal of Xiamen University (Natural Science)R96: 05-24(1995).
Lodovici, M., Guglielmi, F., Casalini, C., Meoni, M., Cheynier, V, Dolara. Antioxidant and radical scavenging properties in vitro of polyphenolic extracts from red wine. Eur. J. Nutr. 40: 74-77(2001).
Matschinsky FM. Glucokinase as glucose sensor and metabolic singal generator pancreatic β-cells and hepatocytes. Diabetes.39: 647-652(1990).
Mayer JP, Zhang F, DiMarchi RD. Insulin structure and function. Biopolymers. 88(5): 687-713(2007).
Maarten, F. C.M.; Petra, L. M.; Wilbert, H. M.; Eric, A. P. Glutathione and glutathione-related enzymes in reproduction a review. European Journal of Obs. Gynecol. Reprod. Biol. 82: 171-184(1999).
McCord, J. M. The evolution of free radicals and oxidative stress. Am. J. Med. 108(8): 652-659(2000).
Milic, B. L.; Djilas, S. M.; Canadanovic-Brunet, J. M. Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chem. 61: 443-447(1998).
Miller, N. J.; Rice-Evans, C. A.; Davies, M. J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant capacity and its application to neonates. Clin. Sci. 84: 407-412(1993).
Moskovitz, J.; Yim, M. B.; Chock, P. B. Free radicals and diseases. Arch. Biochem. Biophys. 397(2): 354-359 (2002).
Mohammed Hosny and John P. N. Rosazza. Structures of ferulic acid glycoside esters in corn hulls. Journal of Natural Products, 60: 219-222 (1997).
Mundkinajeddu D.and Sukhdev S. H. Quantitative determination of the major constituents of Verbena officinalis using high performance thin layer chromatography and high pressure liquid chromatography. Phytochem. Anal. 11: 351–355 (2000).
Nawar, W. W. Lipid in “Food Chemistry”. Fennema, O. R. Ed., Marcel Dekker, INC., New York. 139-244(1985).
Papas, A. M. Diet and antioxidant status. Food Chem. Toxic. 37: 999-1007(1999).
Perkins, E. G. Formation of nonvolatile decomposition products in heated fats and oils. Food Technol. 21: 125-134(1967).
Poitout, V., Robertson, R. P. Minireview: Secondary beta-cell failure in type 2 diabetes-a convergence of glucotoxicity and lipotoxicity. Endocrinology 143: 339-342(2002).
Prentki, M., Nolan, C. J. Islet beta cell failure in type 2 diabetes. J. Clin. Invest. 116: 1802-1812(2006).
Quirantes P., Funes, L., Micol,V., Segura-Carreteroa , A., Fernandez-Gutierrez, A. High-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight and ion-trap tandem mass spectrometry to identify phenolic compounds from a lemon verbena extract. Journal of Chromatography A, 1216: 5391–5397(2009).
Rahimi, R., Nikfar, S., Larijani, B., and abdollahi, M. A review on the role of antioxidants in the management of diabetes and it complications. Biomed. Pharmacother. 59: 365-373(2005).
Rhabasa-Lhoret, R., and Chiasson, J. L. Alpha-glucosidase inhibitors (3rd ed.). In R. A. Defronzo, E. Ferrannini, H. Keen and P. Zimmet (Eds.). International textbook of diabetes mellitus (Vol. 1). UK: John Wiley. (2004).
Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20: 933-956(1996).
Rikans, L. E.; Hornbrook, K. R. Lipid peroxidation, antioxidant protection and aging. Biochim. Biophys. Acta.,1362: 116-127(1997).
Ross S, Gulve E, and Wang M. Chemistry and Biochemistry of Type 2 Diabetes. Chemical Reviews,104: 1255-1282(2004).
Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature. 414: 799-806(2001).
Sau-Wan Lai, Man-Shan Yu, Wai-Hung Yuen, Raymond Chuen-Chung Chang. Novel neuroprotective effects of the aqueous extracts from Verbena officinalis Linn. Neuropharmacology 50:641-650(2006).
Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr. 130: 2073-2085(2000).
Schildermann, P. A. E. L.; Ten Hoor, F.; Kleinjas, J. C. S. Induction of oxidative DNA damage and early lesions in rat gastro-intestinal epithelium in relation to prostaglandin H synthase-mediated metabolism of butylated hydroxyanisole. Food Chemistry.33: 99-109(1995).
Sen, C. K. Nutritional biochemistry of cellular glutathione. Nutrl. Biochem. 8: 660-672(1997).
Shigenaga, M. K.; Gimeno, C. J.; Ames, B. N. Urinary 8-hydroxy-2'-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proc. Natl. Acad. Sci. U S A. 86: 9697-9701(1989).
Shepherd, P.R., and B.B. Kahn. Glucose transporters and insulin action: Implications for insulin resistance and diabetes mellitus. N. Engl. J. Med.341(4): 248-257(1999).
Sheyla Rehecho, Olman Hidalgo, Mikel García-Iñiguez de Cirano, Iñigo Navarro, Iciar Astiasarán, Diana Ansorena, Rita Yolanda Cavero, María Isabel Calvo. Chemical composition, mineral content and antioxidant activity of Verbena officinalis L. LWT - Food Science and Technology 1-8 (2010).
Sherwin, E. R. Oxidation and antioxidants in fat and oil peocessing. J. Am. Oil Chem. Soc. 55: 809-814(1978).
Shimada K, Fujikawa F, Yahara K, and Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40: 945-948(1992).
Shim, Y. J., Doo, H. K., Ahn, S. Y., Kim, Y. S., Seong, J. K., Park, I. S., Min,B. H. Inhibitory effect of aqueous extract from the gall of Rhus chinensis on alpha-glucosidase activity and postprandial blood glucose. Journal of Ethnopharmacology 85: 283–287(2003).
Simic, M. G. Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutat. Res. 202: 377-386(1988).
Susana Manzano and Gary Williamson. Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells. Molecular Nutrition and Food Research. 54: 1773–1780 (2010).
Tang, Y. F., Huang, D.F., Xie, M. Y. Effects of verbascoside and isoverbascoside on proliferation of dendritic Cells. Chinese Pharmaceutical Journal, V43(23): 1785-1787(2008).
Tadera, K., Minami, Y., Takamatsu, K., Matsuoka, T. Inhibition of α-glucosidase and α-amylase by flavonoids. J Nutr Sci Vitaminol 52: 149-153(2006).
Takeshi K, shoichi N, Jo S, Yansunori K, Yasuhiko I, Masashi K, Kisihio N, Akira S, Yutaka S, Chikako I, Kenji S, Kyohei N, and TakashiK. Report of the Committee on the classification and diagnostic criteria of diabetes mellitus, Diabetes Research and Clinical Practice. 55: 65-85(2002).
Topinka, J.; Bincova, B.; Sram, R. J.; Erin, A. N. The influence of α-tocopherol and pyritinol on oxidative DNA damage and lipid peroxidation in human lymphocytes. Mutat Res. 255: 131(1989).
Valko, M.; Rhodes, C. J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160: 1-40(2006).
Wang TJ, Yang SM, Huang ZP, Li QF, Li QG, Zhou H, Zheng RL, Jia ZJ.Induced-differentiation and cytotoxicity of isoverbascoside on HL-60 cells. Acta Biologiae Experimentalis Sinica. 32(4): 321-7(1999).
White MF, Kahn CR.J Biol Chem. The insulin signaling system. Jan 7;269(1): 1-4(1994).
Wu, G.; Fang, Y. Z.; Yang, S.; Lupton, J. R.; Turner, N. D. Glutathione metabolism and its implications for health. Nutr. Sci. 18: 489-492(2003).
Yenny Adriana Gomez-Aguirre, Alejandro Zamilpa, Manases Gonzalez-Cortazar,Gabriela Trejo-Tapia. Adventitious root cultures of Castilleja tenuiflora Benth. as a source of phenylethanoid glycosides. Industrial Crops and Products 36: 188–195 (2012).
Yokozawa, T.; Cho, E. J.; Hara, Y.; Kitaani, K. Antioxidative activity of green tea treeayed with radical initiator 2’-azobis (2-amidinopropane) dihydrochloride. J. Agric. Food Chem. 48: 5068-5073(2000).
Zimmet, P., Alberti, K. G., Shaw, J. Global and societal implications of the diabetes epidemic. Nature 414: 782-787(2001).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top