跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 06:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許智傑
研究生(外文):Hsu Chih Chieh
論文名稱:以二氧化鈦及氧化銅奈米粉體改質巴克紙其光電特性之研究
論文名稱(外文):Study on optoelectronic characteristics of buckypapers doped with titanium dioxide and copper oxide nano powders
指導教授:劉日新劉日新引用關係
指導教授(外文):Liu Jih Hsin
口試委員:苗新元潘瑞文王可文
口試委員(外文):Miao Hsin YuanP'an Jui WenWang K'e Wen
口試日期:2012-07-17
學位類別:碩士
校院名稱:東海大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:76
中文關鍵詞:奈米碳管紙奈米碳管二氧化鈦粉體氧化銅粉體光電導
外文關鍵詞:BuckypaperCarbonNanotubestitanium dioxide nanopowderscopper oxide nanopowdersphotoconductive
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用實驗室自製奈米碳管紙(Buckypaper,BP),讓奈米碳管(Carbon Nanotubes,CNTs)在奈米尺度下的優異光電特性,得以在巨觀上展現,並進一步對BP進行改質,讓BP展現出更優異的光電特性。
使用蒸鍍法分別製作出二氧化鈦粉體及氧化銅粉體,蒸鍍鈦時通入氬氣與氧氣流量比率為6比1,蒸鍍銅時通入氬氣與氧氣流量比率為3比0.9,藉由調整閥門大小來控制腔體內的氣體壓力,分別在氣壓為300mtorr、500mtorr、700mtorr的狀態下,製作出粒徑不同的粉體,經由X光繞射儀(X-ray Diffractometer,XRD)對製作出粉體,進行結構鑑定,並推算出平均粒徑大小,於製造BP過程中,分別進行摻雜,加以改質BP,製作出摻雜成份、含量不同之BP。將不同摻雜條件下製作出之BP,運用霍爾量測,觀測載子濃度及遷移率變化,並將其放入太陽光模擬機內,觀測光電特性之變化並加以討論。
研究結果發現,由XRD繞射圖形比對Joint Committee on Powder Diffraction Standards (JCPDS)資料庫,製作出二氧化鈦粉體為金紅石結構二氧化鈦與三氧化二鈦混合粉末,氧化銅粉體則為純氧化銅粉末,並推算出在氣壓分別為300mtorr、500mtorr、700mtorr的狀態下,製作出二氧化鈦粉體平均粒徑為5.83nm、5.73nm、5.47nm,氧化銅粉體平均粒徑為6.85nm、6.26nm、5.95nm。霍爾量測結果顯示,摻雜後BP跟未摻雜BP,載子濃度及遷移率上變化不明顯,推測原因為摻雜粉體只是塞在碳管跟碳管間的縫隙,並沒有形成原子密集且長程有序堆積的塊材,所以量測出數據沒有明顯變化。觀測其光電特性,以摻雜在氣壓300mtorr下製作出氧化銅粉體20wt%之BP表現出最好的光電特性比起未摻雜BP,光電壓提升6.6倍、光電流提升9倍、光電導提升2.8倍。
本研究成功將CNTs製作成BP,以便於日常生活中應用,並藉由粉體摻雜的方式對BP進行改質,改質後BP表現出光電特性較未摻雜BP更為優異,讓BP更進一步得以應用於光電材料上。

This study was focus on one kind of paper-like material called the Buckypaper(BP) which was made from multi-walled carbonnanotubes (MWCNTs) by vacuum filtration method. Besides, we created titanium dioxide nanopowders with argon gas of 36sccm and oxygen gas of 6sccm and copper oxide nanopowders with argon gas of 45sccm and oxygen gas of 13.5sccm during evaporation method. After the evaporating process, three different sizes of nanopowders were created under chamber pressure of 300mtorr, 500mtorr, and 700mtorr,in other words the average particle size of titanium dioxide nanopowders were 5.83nm, 5.73nm, 5.47nm,and copper oxide nanopowders were 6.85nm, 6.26nm, and 5.95nm respectively. After that three different size of nanopowders with their weight percentageof 10%and 20% were mixed with MWCNTs during the BP manufacturing process and these samples we call them BP+TiO2(powders)and BP+CuO(powders).
And for resistance characterization of one pure BP and six kinds of nano powders doped BPs, four-leads measurement were carried out by Keithley 2410 Source Meterand were illuminated by solar simulator (AM 1.5G)at the same time.
As a result, BP+CuO(300mtorr)showed the best photoconductivity effect under illumination due to surface effect and quantum size effect of nonopowders, for instance the photocurrent of BP+CuO(300mtorr)are 9 times greater than that of undoped BP, and photovoltage of CuO doped BP also got a 6.6 times better performance than undoped BP. Moreover the photoconductivity of CuO doped BP got a 2.8 times improvement better than that of the undoped BP.

總 目 錄
摘要......................................................................................................I
Abstract................................................................................................III
總目錄..................................................................................................V
表目錄.................................................................................................VIII
圖目錄...................................................................................................IX

第一章 緒論.........................................................................................1
1.1前言.................................................................................................1
1.2研究動機與目的.............................................................................3

第二章 文獻回顧.................................................................................4
2.1奈米碳管簡介.................................................................................4
2.2奈米碳管的光電特性.....................................................................6
2.3巴克紙簡介及應用.........................................................................7
2.4奈米粉體簡介.................................................................................9
2.5二氧化鈦簡介................................................................................10
2.6氧化銅簡介....................................................................................12

第三章 實驗架構與量測儀器介紹....................................................13
3.1實驗架構........................................................................................13
3.1.1實驗藥品及材料.....................................................................14
3.1.2實驗儀器.................................................................................15
3.2實驗樣品製備..................................................................................16
3.2.1巴克紙製作.............................................................................16
3.2.2二氧化鈦奈米粉體製作.........................................................18
3.2.3氧化銅奈米粉體製作.............................................................22
3.2.4光量測樣品製作.....................................................................24
3.2.5光電特性量測系統簡介.........................................................26
3.3實驗儀器介紹..................................................................................27
3.3.1太陽光模擬機.........................................................................27
3.3.2 X光繞射儀.............................................................................29
3.3.3霍爾量測................................................................................ 30

第四章 實驗結果與討論.....................................................................32
4.1 X光繞射分析.................................................................................32
4.2霍爾量測分析.................................................................................35
4.3光電特性分析.................................................................................36
4.3.1巴克紙光電特性分析............................................................37
4.3.2摻雜二氧化鈦粉體之巴克紙光電特性分析.......................40
4.3.3摻雜氧化銅粉體之巴克紙光電特性分析...........................48
4.3.4更換照光模式觀測其光電特性之變化...................................63

第五章 結論............................................................................................72

參考文獻..................................................................................................74

[1] 張湘芳、儲三陽,影印機原理介紹,清華大學化學系。
[2] 林嘉偉,光檢測器之發展現況。
[3] R. Schaffert: Electrophotography. Focal Press, 1975。
[4] S. Iijima, "Helical microtubules of graphitic carbon", Nature, vol. 354,pp.
56-58, 1991。
[5] T.W. Ebbesen and P.M. Ajayen, “Large-scale synthesis of carbon nanotubes”,
Nature, vol.358, pp.220-222, 1992。
[6] http://www.cbt.com.tw/images/cnt2.JPG
[7] Iijima S., Ichihashi T.,“Single-shell carbon nanotubes of 1-nm diameter”, Nature,
1993, vol. 363, pp.603-605。
[8] D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J.Vazquez
and R.Beyers, “Cobalt-catalysed growth of carbon nanotubes
with single-atomic-layer walls”, Nature, vol. 363, pp.605-607, 1993。
[9] Fujiwara, Akihiko (2001) “Photoconductivity in Semiconducting
Single-Walled Carbon Nanotubes”
[10] Rafail F. Khairoutdinov, Larissa V. Doubova,Robert C.Haddon,and 1
Laxmikant Saraf , “Persistent Photoconductivity in Chemically 1
Modified Single-Wall Carbon Nanotubes”, J. Phys Chem B, Vol. 108, 1
pp. 19976–19981, 2004
[11] Mikhail E. Itkis, Ferenc Borondics, Aiping Yu, Robert C. Haddon , 1“Bolometric Infrared Photoresponse of Suspended Single-Walled 1
Carbon Nanotube Films”, Science, vol. 312, pp 413-416, 2006
[12] AuthorAshant Allen, Andrew Cannon, Jungchul Lee, William P 1King
and Samuel Graham, “Flexible microdevices based on carbon nanotubes”,
J. Micromech. Microeng. , vol. 16, pp. 2722, 2006
[13] Dacheng Wei, Yunqi Liu,* Lingchao Cao, Hongliang Zhang, Liping Huang,
and Gui Yu “Synthesis and Photoelectric Properties of Coaxial
Schottky Junctions of ZnS and Carbon Nanotubes” ,2009
[14] A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. R. Macias, P. J.
Boul1, A. H. Lu1, D. Heymann1, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M.
Rao, P. C. Eklund and R. E. Smalley, "Large-scale purification of single-wall
carbon nanotubes: process, product, and characterization", Applied Physics A:
Materials Science & Processing, vol. 67, pp. 29-37, 1998
[15] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, . Lu, T.
Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, "Fullerene pipes", Science, vol. 280, pp. 1253-1256, 1998.
[16] M. Endo, H.Muramatsu, T.Hayashi,Y. A.Kim, M. Terrones†, M. S. Dresselhaus,
“Buckypaper from coaxial nanotubes”, Nature, vol. 433 2005
[17] Y. W. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang and B. Wang,
"Analysis of a laser post-process on a Buckypaper field emitter for high
and uniform electron emission", Nanotechnology, vol. 20, pp.
325302-325309, 2009
[18] W. Knapp and D. Schleussner, "Carbon Buckypaper field emission
investigations", Vacuum, vol. 69, pp. 333-338, 2002
[19] 奈米科技網 http://nanotechweb.org/cws/article/tech/20149
[20] 物理世界網 http://physicsworld.com/cws/article/news/31812
[21] Ku C.L., 2007, “Nanotube buckypaper electrodes for pem fuel cell
applications”, A Thesis submitted to the Department of Industrial Engineering
in partial fulfillment of the requirements for the degree of Master of Science
[22] R. Smajda, k. Kukovecz, Z. Konya and I. Kiricsi, "Structure and gas
permeability of multi-wall carbon nanotube Buckypapers", Carbon, vol.
45, pp. 1176-1184, 2007
[23] Capdevila S., Pérez J., Jofre M., et al.,2007, “ Microwave Characterization of a
CNT Bucky Paper Transmission line”, San Sebastian-Spain.
[24] Zhang M., Fang S., Zakhidov A. A., et al., 2005, “Strong, transparent,
multifunctional, carbon nanotube sheets”, Science,Vol. 309, pp. 1215-1219.
[25] Aguirre C. M., Auvray S., Pigeon S.,et al.,2006, “Carbon nanotube sheets as
electrodes in organic light-emitting diodes”, App. Phys Lett , Vol. 88, pp.
183104.
[26] 陳正雍,奈米金粉粒的原子結構及吸收光譜與粒徑關係探討,
國立中央大學
[27] 科羅拉多大學,礦物結構與特性資料庫http://ruby.colorado.edu/~smyth/min/tio2.html
[28] Studies on the Preparation of Nanometer Photocatalytic TiO2 by Supercritical Carbon Dioxide ,吳建儀,國立成功大學。
[29] 反應性磁控濺鍍沉積氧化銅薄膜光電特性之研究,巫致瑋,南台科技大學。
[30] 氧化亞銅與氧化銅奈米微粒的熱縮現象探討,林聖達,國立中央大學。
[31] The Study of Organic Solar Cell Doped with Metallic Nanoparticle,吳奉修,
國立中山大學。
[32] Kittle, Introduction to Solid State Physics, Chapter 2,31. (1988)
[33] 以渦電流法驗證渦漩對正巴克紙製作之研究,徐少軒,
東海大學電機工程學系
[34] Greenwood, N. N.; Earnshaw, A.. Chemistry of the Elements.
2nd Edition. Oxford:Butterworth-Heinemann. 1997.
[35] Corman, D. Scherrer’s Formula: Using XRD to Determine Average Diameter
of Nanocrystals
[36] 宋健民,鑽石的熱生電及電吸熱效應:尖端奈米科技的奇蹟,
中國砂輪企業股份有限公司
[37] 徐子民,奈米科技,國立中央大學
[38] 賴炤銘、李錫隆,奈米材料的特殊效應與應用,
國立中正大學化學暨生物化學系
[39] 謝煜弘,電子材料,新文京開發出版有限公司。
[40] 吳瑞泰,化學鍵結與分子結構軌域混成與分子軌域。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top