跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 12:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳玥禎
研究生(外文):Wu, Yuejen
論文名稱:以草食性蜥蜴之腸道菌群進行嗜熱暗醱酵纖維水解產氫之研究
論文名稱(外文):Thermophilic Dark Hydrogen Fermentation From Cellulose By Using Enteric Microflora Of The Herbivorous Lizard Green Iguana
指導教授:黃啟裕黃啟裕引用關係
指導教授(外文):Huang, Chiyu
口試委員:鄭幸雄郭獻文
口試委員(外文):Cheng, ShengshungKuo, Hsionwen
口試日期:2012-06-25
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:89
中文關鍵詞:氫氣暗醱酵纖維素綠鬣蜥反應曲面法
外文關鍵詞:HydrogenDark fermentationCelluloseGreen IguanaResponse surface methodology
相關次數:
  • 被引用被引用:1
  • 點閱點閱:609
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
鑑於今日地球能源主要依賴化石燃料,隨著化石燃料的的大量開採及使用,人類即將面對的是化石燃料的耗盡及環境污染的問題。為了解決能源短缺及環境惡化的問題,開發替代能源是全球一重要的課題。氫氣是個具有潛力的再生能源,它可利用厭氧微生物在不需要光照之下,將有機廢棄物如纖維素經暗醱酵分解轉化而產生,因此具有低成本、減廢與資源回收再利用的優點。本研究利用爬蟲動物綠鬣蜥(Iguana iguana)之腸道混合菌群進行纖維水解產氫,發覺有類似瘤胃微生物水解纖維產氫的效果。本研究探討不同溫度、pH 值與亞鐵離子濃度對爬蟲類腸道菌群產氫的影響。同時利用反應曲面法(Response surface methodology,簡稱RSM)以及統計分析探討溫度、pH值以及亞鐵離子濃度對產氫的最佳培養條件。經由實驗結果得知,本混合菌群培養在57.5℃、初始pH 值為7.8 且亞鐵離子濃度為100 mg/L 時可得到最佳的產氫速率(HPR)為19.8 mL/L/hr。在最佳的培養條件下纖維素的水解速率為0.13 g/L/hr。在醱酵產氫中,醋酸(1.5 g/L)及乙醇(1.2 g/L)為本混合菌群兩個主要的代謝產物。
Considering energy crisis and global environmental impacts, such as greenhouse effect and resource recovery, development of non-polluting and renewable alternative energy is a global important issue. Hydrogen is a potential renewable energy carrier. It can be produced via dark fermentation from organic materials such as cellulosic wastes by anaerobic microorganisms without illumination, through which benefits of low-cost, waste reduction and resource recycling can be achieved. Cellulose was converted into H2 in batch experiment by a mixed culture enriched from enteric microflora of the reptile green iguana (Iguana iguana) in this study. The results showed that the cellulose digestibility by green iguana enteric flora was similar to that of ruminant mammals. Effects of different temperatures, pH’s and ferrous ion concentrations on H2 production were examined. Statistical experimental design methodology was used to evaluate optimal conditions for H2
fermentation. With response surface methodology (RSM) analysis, the optimal conditions for H2 production by the mixed culture occurred at 57.5oC, pH7.8 and ferrous concentration of 100 mg/L with maximum H2 production rate (Rmax) of 19.8 mL/hr. Cellulose degradation rate was 0.13 g/L/hr under optimal conditions. Acetate (1.5 g/L) and ethanol (1.2 g/L) were the two major soluble metabolites detected at the end of H2 fermentation by this mixed culture.
第一章 前言 ....................................................................................... 1
1.1 研究動機 ................................................................................ 1
1.2 研究目的 ................................................................................ 2
第二章 文獻回顧 ................................................................................ 4
2.1 能源 ...................................................................................... 4
2.1.1 不可再生能源 ............................................................. 4
2.1.2 再生能源..................................................................... 5
2.2 生質能 ................................................................................... 5
2.3 氫氣的產生方式 .................................................................... 6
2.3.1 熱化學法..................................................................... 6
2.3.1.1 蒸氣重組法 ....................................................... 6
2.3.1.2 煤炭氣化反應 .................................................... 6
2.3.1.3 部分氧化法 ....................................................... 8
2.3.2 電化學法 ...................................................................... 8
2.3.2.1 電解法 ............................................................... 8
2.3.2.2 光電解法 ........................................................... 8
2.3.3 生物法 ......................................................................... 8
2.3.3.1 光合作用 ........................................................... 8
2.3.3.1.1 直接光解作用 ......................................... 8
2.3.3.1.2 間接光解作用 ......................................... 9
2.3.3.2 醱酵作用 ........................................................... 9
2.3.3.2.1 光醱酵 ..................................................... 9
2.3.3.2.2 暗醱酵 .................................................... 11
2.4 厭氧纖維水解醱酵產氫 ....................................................... 12
2.4.1 基質 ........................................................................... 13
2.4.1.1 纖維素的結構 .................................................. 14
2.4.2 纖維水解產氫菌群來源 ............................................. 15
2.4.3 纖維水解機制 ............................................................ 15
2.4.4 暗醱酵產氫機制 ........................................................ 19
2.4.5 暗醱酵產氫程序影響因子 ......................................... 22
2.4.5.1 溫度 ................................................................. 22
2.4.5.2 pH 值 ............................................................... 22
2.4.5.3 鐵、鎳離子 .................................................... 23
2.5 實驗設計方法....................................................................... 24
2.5.1 因子設計................................................................... 24
2.5.2 田口設計 .................................................................... 25
2.5.3 反應曲面法 ................................................................ 25
2.5.3.1 實驗設計流程 .................................................. 27
第三章 材料與方法 ...........................................................................29
3.1 實驗設計流程 ..................................................................... 29
3.2 菌株來源 ............................................................................. 29
3.3 菌株培養 ............................................................................. 29
3.3.1 厭氧操作................................................................... 29
3.3.2 嗜熱厭氧培養基 ....................................................... 32
3.4 植種品質 ............................................................................. 32
3.4.1 前培養時間 ............................................................... 32
3.4.2 菌群穩定性試驗 ........................................................ 33
3.5 環境因子之影響 .................................................................. 36
3.5.1 溫度 ........................................................................... 36
3.5.2 pH 值 ......................................................................... 36
3.5.3 微量元素(Fe 2+和Ni 2+) ........................................ 36
3.5.4 亞鐵離子濃度 ............................................................ 37
3.6 生物產氫潛能....................................................................... 37
3.7 RSM 實驗設計 ..................................................................... 38
3.7.1 產氫最佳條件設定 ..................................................... 38
3.7.2 中心混成設計 ............................................................ 38
3.7.3 RSM 實驗操作 ........................................................... 39
3.7.4 統計分析 .................................................................... 41
3.8 分析方法 .............................................................................. 41
3.8.1 細胞生長分析 ............................................................ 41
3.8.2 纖維素濃度測定 ........................................................ 42
3.8.3 總溶解醣濃度測定 ..................................................... 43
3.8.4 氣相產物分析 ............................................................ 43
3.8.5 液相產物分析 ............................................................ 43
3.8.6 產氫能力分析 ............................................................ 44
第四章 結果與討論 ...........................................................................46
4.1 纖維素降解混合菌群之增富培養 ........................................ 46
4.1.1 前培養時間對纖維水解產氫的影響 ......................... 48
4.1.2 菌群穩定性測試 ........................................................ 50
4.1.3 生長曲線 .................................................................... 51
4.2 環境因子之影響 ................................................................... 53
4.2.1 溫度對生長、纖維素水解及產氫的影響 ................... 53
4.2.2 pH 值對生長、纖維素水解及產氫的影響 ................. 55
4.2.3 微量元素(Fe2+、Ni2+)對生長、纖維素水解及產氫的影響 .................................................................................... 58
4.2.4 亞鐵離子濃度對生長、纖維素水解及產氫的影響 ... 60
4.3 RSM 實驗設計 ..................................................................... 62
4.3.1 產氫最佳條件設定 ................................................... 62
4.3.2 中心混成實驗之產氫結果 ......................................... 62
4.3.3 產氫速率之最適培養條件 ......................................... 66
4.3.4 纖維水解產氫最適化驗證 ......................................... 70
第五章 結論與建議 ...........................................................................74
5.1 結論 ...................................................................................... 74
5.2 建議 ...................................................................................... 75
參考文獻 ............................................................................................76
附錄 ....................................................................................................84
Adams, M. W., Mortenson, L. E. and Chen, J. S.(1980)Hydrogenase.Biochimica et Biophysica Acta, 594: 105-176.
Argun, H., Kargi, F., Kapdan, I. K. and Oztekin, R.(2008)Biohydrogen production by dark fermentation of wheat powder solution: effects of C/N and C/P ration hydrogen yield and formation rate. International Journal of Hydrogen Energy, 33: 1813-1819.
Askarieh, M. M., Chambers, A. V., Daniel, F. B. D., FitzGerald, P. L., Holtom, G. J., Pilkington, N. J. and Rees, J. H.(2000)The Chemical and microbial degradation of cellulose in the near field of a repository for radioactive wastes, Waste Management, 20: 93-106.
Box, G. E. P. and Behenken, D. W.(1960)Some new three level design for the study of quantitative variables. Technometrics: a journal of statistics for the physical, chemical, and engineering sciences, 2: 455-475.
BP Statistical Review of World Energy, June 2011.
Bradford, M. M.(1976)A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 98 (1): 289-297.
Das, D. and Veziroglu, T. N.(2001)Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26: 13-28.
Das, D. and Veziroglu, T. N.(2008)Advances in biological hydrogen production processes. International Journal of Hydrogen Energy, 33: 6046-6057.
Desvaux, M.(2005)Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridium. FEMS Microbiology Reviews, 29: 741-764.
Dinamarca, C. and Bakke, R.(2011)Process parameters affecting the sustainability of fermentative hydrogen production: a short-review. International Journal of Energy and Environment, 2 (6): 1067-1078.
Dubois, M, Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F.(1956)Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28: 350-356.
Fan, Y. T., Xing, Y., Ma, H. C., Pan, C. M. and Hou, H. W.(2008)Enhanced cellulose-hydrogen production from corn stalk by lesser panda manure. International Journal of Hydrogen Energy, 33: 6058-6065.
Fan, Y. T., Zhang, Y. H., Zhang, S. F., Hou, H. W. and Ren, B. Z.(2006a) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresource Technology, 97: 500-505.
Fan, Y.T., Zhang, G. S., Guo, X. Y., Xing, Y. and Fan, M. H.(2006b) Biohydrogen-production from beer lees biomass by cow dung compost. Biomass and Bioenergy, 30: 493-496.
Fangkum, A. and Reungsang, A.(2011)Biohydrogen production from sugarcane bagasse hydrolysate by elephant dung: Effects of initial pH and substrate concentration. International Journal of Hydrogen Energy, 36: 8687-8696.
Frey, M.(2002)Hydrogenases: hydrogen-activating enzymes. Chembiochem: a European journal of chemical biology, 3: 153-160.
Guedon, E., Desvaux, M. and Petitdemange, H.(2002)Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Applied and Environmental Microbiology, 68 (1): 53-58.
Hallenbeck, P. C.(2009)Fermentative hydrogen production: principles, progress, and prognosis. International Journal of Hydrogen Energy, 34: 7379-7389.
Huang, C. Y., Patel, B. K., Mah, R. A. and Baresi, L. ( 1988 )Caldicellulosiruptor owensensis sp. Nov., an anaerobic, extremely thermophilic, xylanolytic bacterium. International Journal of Systematic
Bacteriology, 48: 91-97.
Hungate, R. E.(1969)A roll tube method for cultivation of strict anaerobes. In: Norris, J. R. and Ribbons, D. W., editor. Methods in Microbiology, volume 3B. London and New York: Academic Press. 117-132.
Junelles, A. M., Janati-Idrissi, R., Petitdemange, H. and Gay, R.(1988)Iron effect on acetone butanol fermentation . Current Microbiology, 17: 299-303.
Kalia, V. C., Lal, S., Ghai, R., Mandal, M. and Chauhan, A.(2003)Mining genomic databases to identify novel hydrogen producers. Trends in Biotechnology, 21 (4): 152-156.
Karadag, D. and Puhakka, J. A.(2010)Enhancement of anaerobic hydrogen production by iron and nickel. International Journal of Hydrogen Energy, 35: 8554-8560.
Katherine, T.(1984)Structure and function of the digestive tract of a herbivorous lizard Iguana iguana. Physiological Zoology, 57: 1-18.
Khan, A. W., Trottier, T.M., Patel, G. B. and Martin, S. M.(1979)Nutrient requirement for the degradation of cellulose to methane by a mixed population of anaerobes. Journal of General Microbiology, 112: 365-372.
Lai, T. E., Nopharatana, A., Pullammanappallil, P. C. and Clarke, W. P.(2001) Cellulolytic activity in leachate during leach-bed anaerobic digestion of municipal solid waste, Bioresource Technology, 80: 205-210.
Lay, C. H., Kuo, S. Y., Sen, B., Chen C. C., Chang, J. S. and Lin, C. Y.(2012) Fermentative biohydrogen production from starch-containing textile wastewater. International Journal of Hydrogen Energy, 37: 2050-2057.
Lay, J. J., Fan, K. S., Hwang, J. I., Chang, J. I. and Hsu, P. C.(2005)Factors affecting hydrogen production from food wastes by Clostridium-rich composts. Journal of Environmental Engineering, 131: 595-602.
Lee, Y. J., Miyahara, T. and Noike, T.(2001)Effect of iron concentration on
hydrogen fermentation. Bioresource Technology, 80: 227-231.
Lin, C. Y. and Hung, W. C. ( 2008 ) Enhancement of fermentative hydrogen/ethanol production from cellulose using mixed anaerobic cultures. International Journal of Hydrogen Energy, 33: 3660-3667.
Liu, G. Z and Shen, J. Q.(2004)Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. Journal of Bioscience and Bioengineering, 98: 251-256.
Mouriño, F., Akkarawongsa, R. and Weimer, P. J.(2001)Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro. Journal of Dairy Science, 84: 848-859.
Nath, K. and Das, D(. 2004)Improvement of fermentative hydrogen production: various approaches. Applied Microbiology and Biotechnology, 65: 520-529.
Neves, A. A., Vieira, L. M. and Menezes, J. C.(2001)Effects of preculture variability on clavulanic acid fermentation. Biotechnology and Bioengineering, 72: 628-633.
Ntaikou, I., Antonopoulou, G. and Lyberatos, G.(2010)Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valor, 1: 21-39.
O-Thong, S., Prasertsan, P., Intrasungkha, N., Dhamwichukorn, S. and Birkeland, N. K.(2008)Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium-rich sludge. International Journal of Hydrogen Energy, 33: 1221-1231.
Peguin, S. and Soucaille, P.(1995)Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. Applied and Environmental Microbiology, 61: 403-405.
Peters, J. W.(1999)Structure and mechanism of iron-only hydrogenases. Current Opinion in Structural Biology, 9: 670-675.
Qu, X., Vavilin, V. A., Mazéas, L., Lemunier, M., Duquennoi, C., He, P. J. and Bouchez, T.(2009)Anaerobic biodegradation of cellulosic material: Batch experiments and modeling based on isotopic data and focusing on aceticlastic and non-aceticlastic methanogenesis. Waste Management, 29: 1828-1837.
Saha, B.C.(2003)Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 30: 279-291.
Saratale, G. D., Chen, S. D., Lo, Y. C., Saratale, R. G. and Chang, J. S.(2008) Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation- a review. Journal of Scientific and Industrial Research, 67: 962-979.
Sawa, M., Tsurimaki, Y., Tsuru, T. and Shimizu, H.(1988)New quantitative method to determine protein concentration and cell number in aqueous in vivo. Japanese Journal of Ophthalmology, 32: 132-142.
Schoenheit, P., Brandis, A. and Thauer, R. K.(1979)Ferredoxin degradation in growing Clostridium pasteurianum during periods of iron deprivation. Archives of Microbiology, 120: 73-76.
Sillers, R., Chow, A., Tracy, B. and Papoutsakis, E. T.(2008)Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate
the robustness of the acid-formation pathways and the importance of electron balance. Metabolic Engineering, 10: 321-332.
Sreela-or, C., Imai, T., Plangklang, P. and Reungsang, A(. 2011)Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures. International Journal of Hydrogen Energy, 36:
14120-14133.
Sreela-or, C., Plangklang, P., Imai, T. and Reungsang, A(. 2011)Co-digestion of food waste and sludge for hydrogen production by anaerobic mixed
cultures: Statistical key factors optimization. International Journal of Hydrogen Energy, 36: 14227-14237.
United Nations Environment Programme. ( 2009 ) Towards sustainable production and use of resources: Assessing Biofuels.
Updegraff, D. M.(1969)Semimicro determination of cellulose in biological materials. Analytical Biochemistry, 32: 420-424.
Viles, Jr. F. J. and Silverman, L.(1949)Determination of starch and cellulose with anthrone. Analytical Chemistry, 21: 950-953.
Wang, J. and Wan, W.(2008a)Effect of temperature on fermentative hydrogen production by mixed cultures. International Journal of Hydrogen Energy, 33: 5392-5397.
Wang, J. and Wan, W.(2008b)Effect of Fe2+ concentrations on fermentative hydrogen production by mixed cultures. International Journal of Hydrogen Energy, 33: 1215-1220.
Wang, J. and Wan, W.(2008c)Influence of Ni2+ concentration on biohydrogen production. Bioresource Technology, 99: 8864-8868.
Wang, J. and Wan, W.(2009)Experimental design methods for fermentative hydrogen production: a review. International Journal of Hydrogen Energy, 34: 235-244.
Wu, X., Zhu, J., Dong, C., Miller, C., Li, Y., Wang, L. and Yao, W.(2009) Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch rector. International Journal of Hydrogen Energy, 34: 6636-6645.
Yang, H. and Shen, J.(2006)Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch. International Journal of Hydrogen Energy, 31: 2137-2146.
Yokoyama, H., Moriya, N., Ohmori, H., Waki, M., Ogino, A. and Tanaka, Y.(2007)Community analysis of hydrogen-producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates. Applied Microbiology and Biotechnology, 77: 213-222.
Yossan, S., O-Thong, S. and Prasertsan, P.(2012)Effect of initial pH nutrients and temperature on hydrogen production from palm oil mill effluent using thermotolerant consortia and corresponding microbial communities.
International Journal of Hydrogen Energy, XXX: 1-9.
Yürüm, Y.(1994)Hydrogen Production Methods. In: Yürüm, Y., editor. Hydrogen Energy System, Utilization of Hydrogen and Future Aspects. Netherlands: Kluwer Academic Publishers. 15-30.
Zhang, M.L., Fan, Y. T., Xing, Y., Pan, C. M., Zhang, G. S. and Lay, J. J.(2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass and Bioenergy, 31: 250-254.
Zhang, Y., Liu, G. and Shen, J.(2005)Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations. International Journal of Hydrogen Energy, 30: 855-860.
白明德。(1999)厭氧生物產氫機制與程序操作策略之研究,國立成功大學環境工程學系碩士論文。
林棋能。(2002)固定化細菌產氫。逢甲大學化學工程學系碩士班論文。
郁揆民。(2002)紫色不含硫光合作用細菌產氫限制因子之研究。國立中興大學環境工程學系碩士論文。
張嘉修,李國興,林屏杰,吳石乙,林秋裕。(2002)以環境生物技術生產清潔能源-氫氣。中國化學工程學會,第49 卷,第6 期,第85-104頁。
許晉榮。(2009)運用六標準差步驟與實驗設計於半導體電子元件PDIP 之脫層現象不良率改善,國立屏東科技大學企業管理研究所碩士論文。
葉乃菁。(2011)以反應曲面法探討嗜熱厭氧菌Clostridium thermocellumstrain TCW1 產氫最適化之研究,東海大學環境科學與工程學系碩士論文。
趙禹杰。(2004)澱粉及蛋白腖複合基質厭氧醱酵產氫程序之功能評估,國立成功大學環境工程學系碩士論文。
潘龍發。(2011)應用田口方法評量冠狀動脈攝影術中Spider View 造影之最佳調整參數,中臺科技大學放射科學系碩士論文。
羅泳勝。(2005)以反應曲面實驗設計法探討本土厭氧產氫菌Clostridiumbutyricum CGS2 之最佳醱酵產氫條件,國立成功大學化學工程學系碩士論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top