跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 04:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林世軒
研究生(外文):Shih-Hsuan Lin
論文名稱:改良磁性奈米銀觸媒進行異相催化臭氧去除水中腐植酸之研究
論文名稱(外文):Modified Magnetic Silver nano-catalysts for Heterogeneous Catalytic Ozonation to Remove Humic acid in water
指導教授:張鎮南張鎮南引用關係
指導教授(外文):Cheng-Nan Chang
口試委員:宋孟浩馬英石陳谷汎
口試委員(外文):Meng-hau SungYing-Shih MaKu-Fan Chen
口試日期:2010-07-13
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:79
中文關鍵詞:磁性顆粒異相催化臭氧化腐植酸氫氧自由基捕捉劑coumarin7-hydroxycoumarinTBA
外文關鍵詞:magnetic particlescatalytic ozonationhumic acidhydroxyl radicalsscavengerscoumarin7-hydroxycoumarinTBA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:481
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用改良之磁性銀奈米顆粒 (Fe3O4/SiO2/Ag) 進行異相催化臭氧化去除水中之腐植酸,並在系統中添加氫氧自由基捕捉劑以探討催化臭氧化之機制。已知coumarin與氫氧自由基反應後會形成中間產物7-hydroxycoumarin,藉由中間產物的生成可以用以表示系統中氫氧自由基的存在。結果顯示,Fe3O4/SiO2/Ag結合臭氧之中間產物產量高於單獨臭氧化系統,這是因為Fe3O4/SiO2/Ag能分解臭氧產生更多的氫氧自由基。而加入另一種氫氧自由基捕捉劑TBA後,可以觀察到中間產物的產量會因為氫氧自由基被捕捉而降低,而 Fe3O4/SiO2/Ag結合臭氧之中間產物產量仍高於單獨臭氧化。結果顯示Fe3O4/SiO2/Ag結合臭氧增加了系統中氫氧自由基的含量。以Fe3O4/SiO2/Ag結合臭氧去除水中腐殖酸,只有在水溶液為酸性時,催化臭氧之效果會優於於單獨臭氧化,這是由於水溶液在高pH值時,臭氧之自解反應抑制了催化劑的效果。而以一階反應式之Kd值比較各式催化臭氧化之臭氧分解能力,發現本研究使用之催化臭氧化之Kd值為7.0 10-4 s-1是單獨臭氧化Kd值之1.75倍。經由實驗證實Fe3O4/SiO2/Ag結合臭氧可以提升系統之氧化力並增加腐殖酸之去除率。
This study used modified magnetic silver nanoparticles (Fe3O4/SiO2/Ag) for the heterogeneous catalytic ozonation to remove humic acid (HA) in water. While hydroxyl radical (․OH) scavengers were added to the system in order to investigate the catalytic ozonation mechanisms. Coumarin is known to react with․OH to generate intermediate (7-hydroxycoumarin). The formation of the intermediate can be used to indicate the presence of․OH in the system. Compared to ozonation alone, Fe3O4/SiO2/Ag combined with ozone to produce more intermediate. This is due to the decomposition of ozone to produce more ․OH by Fe3O4/SiO2/Ag. Added another․OH scavengers of TBA can be observed production of intermediate will be reduced because the․OH was captured, while the intermediate produced in Fe3O4/SiO2/Ag combined with ozone is still higher than the ozonation alone. The results showed that Fe3O4/SiO2/Ag combined with ozone to improve the content of․OH in the system. To remove of humic acid by Fe3O4/SiO2/Ag combined with ozone, the humic acid removal rate is only higher than ozonation alone in acidic condition, this is due to the ozone self-decomposition inhibits the effect of the catalyst at high pH cases. Comparison of first-order ozone decay rate constants, the Kd values of this study of 7.0×10-4 s-1 and is 1.75 times than that of ozonation alone. The results indicated the presence of Fe3O4/SiO2/Ag could improve the oxidizing power of overall system and leading to the HA removal rate increased.
CONTENTS
摘要 I
Abstract II
Chapter 1 Introduction 1
1.1 Study Background 1
1.2 Objectives 3
Chapter 2 Literature Review 4
2.1 Natural organic matters 4
2.1.1 Humic substances 6
2.1.2 The impact of natural organic matters on the environment 7
2.1.3 The quantified of natural organic matters. 7
2.2 Disinfection by products 9
2.3 Advanced Oxidation Processes (AOPs) 10
2.4 Catalytic ozonation 17
2.5 Homogeneous catalytic ozonation 18
2.6 Heterogeneous catalytic ozonation 19
2.6.1 Surface properties of catalyst 19
2.6.2 Metal oxide and metal oxide on support 22
2.7 The mechanisms of catalytic ozonation 23
2.8 Nanoparticles 26
2.8.1 Superparamagnetic nanoparticles 26
Chapter 3 Material and Methods 30
3.1 Experiment framework 30
3.2 Preparation of commercial humic acid solution 32
3.3 The preparation of magnetic catalysts 33
3.3.1 Synthesis of Fe3O4 nanoparticles 33
3.3.2 Preparation of Fe3O4/SiO2 particles 33
3.3.3 Preparation of Fe3O4/SiO2/Ag particles 33
3.4 The ozonation system 35
3.5 Analysis method 37
3.5.1 Analysis of catalyst 37
3.5.2 Analysis of humic acid 38
3.5.3 Analysis of hydroxyl radical scavengers 39
Chapter 4 Result and Discussion 40
4.1 Characterization of the assembled and reused catalysts 40
4.2 The mechanisms of silver magnetic nanoparticles catalytic ozonation 48
4.2.1 Zeta potential and pHPZC of catalyst 49
4.2.2 Catalytic ozonation of coumarin 51
4.2.3 Effect of pH 51
4.2.4 Effect of catalyst doses 52
4.2.5 Effect of TBA 54
4.2.5 Reuse of the catalyst 57
4.3 Catalytic ozonation of humic acid 58
4.3.1 Degradation of humic acid and effect of pH 58
4.3.2 Effect of catalyst doses 60
4.3.3 Mineralization rate of humic acid 61
4.3.4 Kinetics of the decay of aqueous ozone 62
Chapter 5 Conclusions and Suggestions 64
5.1 Conclusions 64
5.2 Suggestions 65
References 66
Appdenix 75


References
Badis, A., Ferradji, F.Z., Boucherit, A., Fodil, D., Boutoumi, H., (2010), “Removal of natural humic acids by decolorizing actinomycetes isolated from different soils (Algeria) for application in water purification”, Desalination, Vol. 259, pp. 216-222.
Beltrán, F.J., Rivas, J., Álvarez, P., Montero-de-Espinosa, R., (2002), “Kinetics of heterogeneous catalytic ozone decomposition in water on an activated carbon”, Ozone Science & Engineering, Vol. 24, pp. 227-237.
Parilti, Neval Baycan, Uyguner, Demirel, Ceyda, S., Bekbolet, Miray, (2011), “Response surface methodological approach for the assessment of the photocatalytic degradation of NOM”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 225, pp. 26-35.
Chandrasekara Pillai, K., Kwon, Tae Ouk, Moon, II Shik, (2009), “Degradation of wastewater from terephthalic acid manufacturing process by ozonation catalyzed with Fe2+, H2O2 and UV light: Direct versus indirect ozonation reactions”, Applied Catalysis B: Environmental, Vol. 91, pp. 319-328.
Chen, Yi-Hung, Hsieh, Da-Cheng, Shang, Neng-Chou, (2011), “Efficient mineralization of dimethyl phthalate by catalytic ozonation using TiO2/Al2O3 catalyst”, Journal of Hazardous Materials, Vol.192, pp.1017- 1025.
Choi, Hyemin, Veriansyah, Bambang, Kim, Jaehoon, Kim, Jae-Duck, Kang, Jeong Won, (2010), “Continuous synthesis of metal nanoparticles in supercritical methanol”, J. of Supercritical Fluids, Vol. 52, pp. 285-291.
Chowdhury, S. and Champagne, P., (2008), “An Investigation On Parameters For Modeling Thms Formation”, Global NEST Journal, Vol. 10, pp. 80-91.
Chowdhury, Shakhawat, Rodriguez, Manuel J., Serodes, Jean, (2010), “Model development for predicting changes in DBP exposure concentrations during indoor handling of tap water”, Science of the Total Environment, Vol. 408, pp. 4733-4743.
Feng, Guodong, Hu, Daodao, Yang, Lei, Cui, Yali, Cui, Xin-ai, Li, Hong, (2010), “Immobilized-metal affinity chromatography adsorbent with paramagnetism and its application in purification of histidine-tagged proteins”, Separation and Purification Technology, Vol. 74, pp. 253-260.
Figuerola, Albert, Di Corato, Riccardo, Manna, Liberato, Pellegrino, Teresa, (2010), “From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications”, Pharmacological Research, Vol. 62, pp. 126-143.
Ghosh, Sudipa, Badruddoza, A.Z.M., Uddin, M.S., Hidajat, K., (2011), “Adsorption of chiral aromatic amino acids onto carboxymethyl-β-cyclodextrin bonded Fe3O4/SiO2 core–shell nanoparticles”, Journal of Colloid and Interface Science, Vol. 354, pp. 483-492.
Goncalvesa, Alexandra, Silvestre-Alberob, Joaquin, Ramos-Fernandez, Enrique V., Serrano-Ruiz, Juan Carlos., Orfao, Jose J.M., Sepulveda-Escribano, Antonio, Pereira Manuel, Fernando R., (2012), “Highly dispersed ceria on activated carbon for the catalyzed ozonation of organic pollutants”, Applied Catalysis B: Environmental, Vol. 113-114, pp. 308-317.
Guzman-Perez, Carlos A., Soltan, Jafar, Robertson, Jared, (2011), “Kinetics of catalytic ozonation of atrazine in the presence of activated carbon”, Separation and Purification Technology, Vol. 79, pp. 8-14.
Hebert, Armelle, Forestier, Delphine, Lenes, Dorothe´e, Benanou, David, Jacob, Severine, Arfi, Catherine, Lambolez, Lucie, Levi, Yves, (2010), “Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health”, Water Research, Vol. 44, pp. 3147-3165.
Hoigné, J. and Bader, H. (1983). Rate constants of reactions of ozone with organic and inorganic compounds in water – II. Dissociating organic compounds. Water Research, Vol. 17, pp. 185–194.
Ikhlaq, Amir, Brown, David R., Kasprzyk-Hordern, Barbara, (2012), “Mechanisms of catalytic ozonation on alumina and zeolites in water: Formation of hydroxyl radicals”, Applied Catalysis B: Environmental, Vol. 123–124, pp. 94-106.
Kasprzyk-Hordern, Barbara, Ziółek, Maria, Nawrocki, Jacek, (2003), “Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment”, Applied Catalysis B: Environmental, Vol. 46, pp. 639-669.
Kim, Kyoung-Hun and Ihm, Son-Ki, (2011), “Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review”, Journal of Hazardous Materials, Vol. 186, pp. 16-34.
Lamsal, Rupa, Walsh, Margaret E., Gagnon, Graham A., (2011), “Comparison of advanced oxidation processes for the removal of natural organic matter”, Water Research, Vol. 45, pp. 3263-3269.
Legube, B. and Karpel Vel Leitner, N., (1999), “Catalytic ozonation: a promising advanced oxidation technology for water treatment”, Catalysis Today, Vol.53, pp. 61-72.
Li, Ling, Choo, Eugene S.G., Tang, Xiaosheng, Ding, Jun, Xue, Junmin, (2010), “Ag/Au-decorated Fe3O4/SiO2 composite nanospheres for catalytic applications”, Acta Materialia, Vol. 58, pp. 3825-3831.
Li, Weiwei, Qiang, Zhimin, Zhang, Tao, Bao, Xiaolei, Zhao, Xu, (2011), “Efficientdegradation of pyruvicacid in water by catalyticozonation with PdO/CeO2”, Journal of Molecular Catalysis A: Chemical, Vol. 348, pp. 70-76.
Li, Ying-Sing, Church, JeffreyS., Woodhead, Andrea L., (2012), “Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications”, Journal of Magnetism and Magnetic Materials, Vol. 324, pp. 1543-1550.
Lin, Hui-Chuan and Wang, Gen-Shuh, (2011), “Effects of UV/H2O2 on NOM fractionation and corresponding DBPs formation”, Desalination, Vol. 270, pp. 221-226.
Liu, Wenbo, Zhao, Yanmei, Chow, WK, Christopher, Wang, Dongsheng, (2011), “Formation of disinfection byproducts in typical Chinese drinking water”, Journal of Environmental Sciences, Vol. 23, pp. 897-903.
Liu, Zheng-Qian, Ma, Jun, Cui, Yu-Hong, Zhao, Lei, Zhanga, Bei-Ping, (2011), “Factors affecting the catalytic activity of multi-walled carbon nanotube for ozonation of oxalic acid”, Separation and Purification Technology, Vol. 78, pp. 147-153.
Lv, Baoliang, Xu, Yao, Tian, Hong, Wu, Dong, Sun, Yuhan, (2010), “Synthesis ofFe3O4\SiO2\Ag nanoparticles and its application in surface-enhanced Raman scattering”, Journal of Solid State Chemistry, Vol. 183, pp. 2968-2973.
Maezono, Takuya, Tokumura, Masahiro, Sekine, Makoto, Kawase, Yoshinori, (2011), “Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II”, Chemosphere, Vol. 82, pp. 1422-1430.
Mahmoodi, Niyaz Mohammad, (2011), “Photocatalytic ozonation of dyes using copper ferrite nanoparticle prepared by co-precipitation method”, Desalination, Vol. 279, pp. 332-337.
Mahmoudi, Morteza, Sant, Shilpa, Wang, Ben, Laurent, Sophie, Sen, Tapas, (2011), “Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy”, Advanced Drug Delivery Reviews, Vol. 63, pp. 24-46.
Oller, I., Malato, S., Sánchez-Pérez, J.A., (2011), “Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review”, Science of the Total Environment, Vol. 409, pp. 4141-4166.
Matilainen, Anu, Gjessing, Egil T., Lahtinen, Tanja, Hed, Leif, Bhatnagar, Amit, Sillanpää, Mika, (2011), “An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment”, Chemosphere, Vol. 83, pp. 1431-1442.
Nawrockia, Jacek and Kasprzyk-Hordern, Barbara, (2010), “The efficiency and mechanisms of catalytic ozonation”, Applied Catalysis B: Environmental, Vol. 99, pp. 27-42.
Pradeep, T. and Anshup, (2009), “Noble metal nanoparticles for water purification: A critical”, Thin Solid Films, Vol. 517, pp. 6441-6478.
Pocostales, P., Álvarez, P., Beltrán, F.J., (2011), “Catalytic ozonation promoted by alumina-based catalysts for the removal of some pharmaceutical compounds from water”, Chemical Engineering Journal, Vol. 168, pp. 1289-1295.
Roccaro, Paolo and Vagliasindi, Federico G.A., (2009), “Differential vs. absolute UV absorbance approaches in studying NOM reactivity in DBPs formation: Comparison and applicability”, Water Research, Vol.43, pp.744-750.
Rosal, Roberto, Gonzalo, Maria S., Rodriguez, Antonio, Garcia-Calvo, Eloy, (2010), “Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide”, Journal of Hazardous Materials, Vol. 183, pp. 271-278.
Song, Wonho, Ravindran, Varadarajan, Koel, Bruce E., Pirbazari, Massoud, (2004), “Nanofiltration of natural organic matter with H2O2/UV pretreatment: fouling mitigation and membrane surface characterization”, Journal of Membrane Science, Vol. 241, pp. 143-160.
Staehelin, J. and Hoigné, J., (1985), “Decomposition of ozone in water in the presence of organic solutesacting as promotors and inhibitors of radical chain reactions”, Environ. Sci. Technol., 19, 1206–1213.
Sui, Minghao, Xing, Sichu, Sheng, Li, Huang, Shuhang, Guo, Hongguang, (2012), “Heterogeneous catalyticozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst”, Journal of Hazardous Materials, Vol. 227–228, pp. 227-236.
Van Geluwe, Steven, Braeken, Leen, Van der Bruggen, Bart, (2011), “Ozone oxidation for the alleviation of membrane fouling by natural organic matter: A review”, Water Research, Vol. 45, pp. 3551-3570.
Wang, Yan, Zhang, Hui, Chen, Lu, (2011), “Ultrasound enhanced catalytic ozonation of tetracycline in a rectangular air-lift reactor”, Catalysis Today, Vol. 175, pp. 283-292.
Wang, Zhenghua, Zhu, Shiyu, Zhao, Suping, Hu, Haibo, (2011), “Synthesis of core–shell Fe3O4@SiO2@MS (M= Pb, Zn, and Hg) microspheres and their application as photocatalysts”, Journal of Alloys and Compounds, Vol. 509, pp. 6893-6898.
Wei, Yan, Han, Bing, Hu, Xiaoyang, Lin, Yuanhua, Wang, Xinzhi, Deng, Xuliang, (2012), “Synthesis of Fe3O4 nanoparticles and their magnetic properties”, Procedia Engineering, Vol. 27, pp. 632-637.
Westerhoff, Paul, Aiken, George, Amy, Gary, Debroux, Jean, (1999), “Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals”, Water Research, Vol. 33, pp. 2265-2276.
Ye, Bixiong, Wang, Wuyi, Yang, Linsheng, Wei, Jianrong, E, Xueli, (2009), “Factors influencing disinfection by-products formation in drinking water of six cities in China”, Journal of Hazardous Materials, Vol. 171, pp. 147-152.
Zhao, Zhen-Ye, Gua, Ji-Dong, Li, Hai-Bo, Li, Xiao-Yan, Leung, Mei-Yee Kenneth, (2009), “Disinfection characteristics of the dissolved organic fractions at several stages of a conventional drinking water treatment”, Journal of Hazardous Materials, Vol. 172, pp. 1093-1099.
Zularisama, A.W., Ahmada, Anwar, Sakinah, Mimi, Ismail, A.F., Matsuura, T., (2011), “Role of natural organic matter (NOM), colloidal particles, and solution chemistry on ultrafiltration performance”, Separation and Purification Technology, Vol. 78, pp. 189-200.
呂理維,(2011),“The assembly of magnetic metal ozone catalyst to decompose disinfection of by product”, 東海大學環境科學與工程所碩士論文。
林嘉鈞,(2009),“製備具標靶葉酸受體診斷及治療的多功能pluronic修飾四氧化三鐵”, 國立高雄大學生物科技研究所碩士論文。
張勳鍊,(2010),“Study of degradation of natural organic matters (NOMs) and reduction of disinfection by product (DBPs) in ozonation by design of experiment (DOE) and hydroxyl radicals”, 東海大學環境科學與工程所碩士論文。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top