跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 17:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林恆如
研究生(外文):Heng-Ju Lin
論文名稱:雜交條紋鱸抗菌胜肽Piscidin-1在人類纖維瘤細胞誘導細胞凋亡與細胞壞死 暨 以Cre-loxP技術調控魚類生殖生理之基礎研究與應用
論文名稱(外文):Piscidin-1, an antimicrobial peptide from hybrid striped bass Morone, induces apoptosis and necrosis activity in HT1080 cells & Study and development of Cre-loxP technology in regulation of fish reproduction
指導教授:段葉芳段葉芳引用關係
指導教授(外文):Yeh-Fang Duann
口試委員:陳灝平林正輝許祖法陳志毅
口試委員(外文):Hao-Ping ChenChen-Hui LinCho-Fat HuiJyh-Yih Chen
口試日期:2012-06-01
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:抗菌胜肽piscidin-1細胞毒性基因轉殖魚斑馬魚Cre-loxP
外文關鍵詞:antimicrobial peptides (AMPs)piscidin-1cytotoxicitytransgenic fishzebrafishCre-loxPinfertility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鱸魚肥大細胞中分離出一條包含22個氨基酸的陽離子胜肽(cationic peptide),名為Piscidin-1,具有對革蘭氏陽性和陰性細菌的抗菌活性。 目前,尚無任何腫瘤細胞株與piscidin-1抗腫瘤活性的報告。我們嘗試以人工合成piscidin-1,對幾種人類癌症細胞株以細胞活存試驗 (MTS assay)和軟瓊脂聚落形成實驗來測試 piscidin-1的抗腫瘤活性。結果顯示,低劑量的piscidin-1可誘導 HT1080細胞凋亡(apoptosis)和細胞壞死(necrosis);高劑量的piscidin-1則可在短時間內引發HT1080細胞壞死的細胞死亡途徑。我們將細胞以磷脂結合蛋白V (Annexin V)、碘化丙錠 (propidium iodide)、吖啶橙(acridine orange)和溴化乙錠 (ethidium bromide)染色,用穿透式電子顯微鏡觀察發現 piscidin-1對細胞膜破壞的證明。此外,piscidin-1也可以抑制HT1080細胞轉移。在我們的實驗中piscidin-1是第一個研究抗癌活性的抗菌胜肽,對未來用於治療癌症方面的研究深具潛力。

魚類基因轉殖研究至今,尚無法上市,其主要原因在於短欠基因轉殖田間隔離試驗場所,且尚無良好的基礎研究與技術來發展評估生物安全性。 基因轉殖魚的研究中,如何造成轉殖魚的後代不孕,是一個重要的生物安全性考量因子。 魚類在得到基因轉殖魚類後,在水產養殖場中與非基因轉殖魚混養,造成基因互換。 轉殖魚種不孕技術之研發,是保護生態環境重要的一個科技。 不孕之基因轉殖魚的產生,可以使得轉殖魚種逃脫人工飼育環境也無繁殖後代之能力,進而達到單一轉殖魚種無後代之觀念。 本研究以斑馬魚當做實驗魚種,針對魚類生殖生理做一系列研究與技術研,並以AMH(Anti-Müllerian hormone)啟動子在精巢組織與Zp(Zona pellucida)卵巢組織專一性表現之特性,轉殖出於精巢與卵巢組織專一性表現之基因轉殖斑馬魚,配合cre-loxp技術調控細胞凋亡,及gene targeting的技術抑制該基因功能,進而產生不孕之基因轉殖魚種。

Piscidin-1, a 22-residue cationic peptide isolated from mast cells of hybrid striped bass, has potent antimicrobial activities against both gram-positive and -negative bacteria. To date, there is no report of its antitumor activity on any tumor cell lines. In this study, we examined the antitumor activity of a synthetic piscidin-1 peptide against several human cancer cell lines by an MTS assay and soft-agar colony formation assay. Results indicated that a low dosage of piscidin could induce both apoptosis and necrosis in HT1080 cells according to Annexin-V/propidium iodide and acridine orange/ethidium bromide staining, and triggered a necrotic cell death pathway in a short period of high-dosage treatment. The destruction of cell membranes by piscidin-1 was demonstrated by transmission electron microscopy. Furthermore, piscidin-1 could also inhibit the migration of HT1080 cells in a dose-dependent manner. To sum up, this study provides the first evidence of the anticancer activity of the antimicrobial peptide, piscidin-1, and illustrates a promising way to treat cancer.

Transgenic fish cannot seek permission to market is due to the reason that field test research area and basic research technology development for evaluation biosafety are not available. Infertility is a necessary adjunct to the exploitation of transgenic fish unless in completely secure land locked facilities. In addition, infertility is an important parameter in its own right, even aside from its use for containment of GM fish. In this research project, we applied Cre-loxP technology to zebrafish for infertility technology development. We produced fish carrying the plasmid that contained apoptosis genes, and these apoptosis genes are separated by two loxP sites under an ovary-specific promoter, AMH, or ZPC promoter control. After obtaining the transgenic lines with both transgenic fish crossed with each other, the floxed DNA would specifically be eliminated from the female, and apoptosis gene expression would be turned on in ovary cells. The infertility technology can be applied to transgene fish industry.

中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 vii
圖目錄 viii

第一篇 雜交條紋鱸抗菌胜肽Piscidin-1在HT1080誘導細胞凋亡與細胞壞死 1
1.1 前言 1
1.2實驗器材與藥品 3
1.2.1 實驗藥品 3
1.2.2 實驗儀器 4
1.3實驗步驟 6
1.3.1 細胞培養 6
1.3.2胜肽合成與試劑 6
1.3.3細胞抑殺試驗(MTS assay) 6
1.3.4軟性瓊脂培養基分析(Soft-Agar Assay) 7
1.3.5 穿透式顯微鏡觀察(TEM) 7
1.3.6 以acridine orange/EtBr染色觀察細胞存活率 7
1.3.7 傷口癒合實驗 8
1.3.8 流式細胞儀分析 8
1.4結果 9
1.4.1 體外試驗測試piscidin-1對腫瘤細胞的細胞毒殺作用 9
1.4.2 細胞膜結構變化 9
1.4.3 Piscidin-1以細胞凋亡形式誘發細胞死亡 9
1.4.4 Piscidin-1對細胞運動的影響 10
1.5 討論 11
1.6 參考文獻 12
圖1.1 piscidin-1結構 16
圖1.2 piscidin-1對cell增生的影響 17
圖1.3 細胞受piscidin-1影響造成型態改變 18
圖1.4 穿透式顯微鏡觀察HT1080細胞 19
圖1.5 Piscidin-1誘導癌細胞產生細胞凋亡 20
圖1.6 傷口創傷分析(in vitro wound-healing assay) 21

第二篇 以Cre-loxP技術調控魚類生殖生理之基礎研究與應用 1
2.1 前言 1
2.2實驗器材與藥品 5
2.2.1 實驗藥品 5
2.2.2 實驗儀器 8
2.3實驗步驟 10
2.3.1斑馬魚飼養 10
2.3.2建構pTLR-AMH-CNH-zBax2-zBax1與pTLR-ZPC-CNH
-zBax2-zBax1質體 10
2.3.3建構pTLR-CCCG質體 12
2.3.4製備Cre recombinase mRNA 12
2.3.5顯微注射(Microinjection) 13
2.3.6 PCR檢測基因轉殖魚後代基因 14
2.3.7 RNA萃取與cDNA合成 14
2.3.8定量即時PCR(Quantitative Real time PCR) 15
2.3.9細胞培養、轉染 15
2.3.10 流式細胞儀分析 16
2.3.11 組織切片 17
2.4結果 18
2.4.1生產基因轉殖斑馬魚 18
2.4.2以TO2細胞建立Cre-loxP系統體外試驗平台 19
2.4.3以AMH為啟動子之Cre-loxP基因轉殖魚qPCR分析 20
2.4.4以Zpc為啟動子之Cre-loxP之基因轉殖魚qPCR分析 22
2.4.5觀察Cre-loxP基因轉殖魚組織切片 24
2.5 討論 25
2.6 參考文獻 30
表2.1 定量PCR專一性引子 40
圖2.1 簡圖表示Cre/loxP技術調控魚類生殖生理實驗架構 41
圖2.2 簡圖表示Cre 以及loxP表現載體 42
圖2.3 體外轉錄Cre recombinase mRNA 43
圖2.4 ZBB轉染TO2細胞 44
圖2.5 以流式細胞儀偵測HcRed蛋白表現量 45
圖2.6 AMH為啟動子之Cre-loxP之基因轉殖魚qPCR分析 46
圖2.7 Zpc為啟動子之Cre-loxP之基因轉殖魚qPCR分析 47
圖2.8 Cre-loxp基因轉殖魚之組織切片(H&E染色) 48
圖2.9 Cre-loxp基因轉殖魚組織解剖 49
附錄 50


[1]M. Zasloff, “Magainins, a class of antimicrobial peptides from Xenopus skin - isolation, characterization of 2 active forms, and partial cDNA sequence of a precursor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, (no. 15), pp. 5449-5453, Aug 1987.
[2]D. Barra and M. Simmaco, “Amphibian skin - a promising resource for antimicrobial peptides,” Trends in Biotechnology, vol. 13, (no. 6), pp. 205-209, Jun 1995.
[3]M. Zasloff, “Antibiotic peptides as mediators of innate immunity,” Current Opinion in Immunology, vol. 4, (no. 1), pp. 3-7, Feb 1992.
[4]P. Nicolas and A. Mor, “Peptides as weapons against microorganisms in the chemical defense system of vertebrates,” Annual Review of Microbiology, vol. 49, pp. 277-304, 1995.
[5]H.G. Boman, “Peptide antibiotics and their role in innate immunity,” Annual Review of Immunology, vol. 13, pp. 61-92, 1995.
[6]G. Wang, X. Li, and Z. Wang, “APD2: the updated antimicrobial peptide database and its application in peptide design,” Nucleic Acids Res, vol. 37, (no. Database issue), pp. D933-7, Jan 2009.
[7]W.S. Sung, J. Lee, and D.G. Lee, “Fungicidal effect and the mode of action of piscidin 2 derived from hybrid striped bass,” Biochemical and Biophysical Research Communications, vol. 371, (no. 3), pp. 551-555, Jul 2008.
[8]S. Subramanian, N.W. Ross, and S.L. MacKinnon, “Comparison of the biochemical composition of normal epidermal mucus and extruded slime of hagfish (Myxine glutinosa L.),” Fish & Shellfish Immunology, vol. 25, (no. 5), pp. 625-632, Nov 2008.
[9]E.Y. Chekmenev, B.S. Vollmar, K.T. Forseth, M.N. Manion, S.M. Jones, T.J. Wagner, R.M. Endicott, B.P. Kyriss, L.M. Homem, M. Pate, J. He, J. Raines, P.L. Gor''kov, W.W. Brey, D.J. Mitchell, A.J. Auman, M.J. Ellard-Ivey, J. Blazyk, and M. Cotten, “Investigating molecular recognition and biological function at interfaces using piscidins, antimicrobial peptides from fish,” Biochimica Et Biophysica Acta-Biomembranes, vol. 1758, (no. 9), pp. 1359-1372, Sep 2006.
[10]R.Q. Fu, E.D. Gordon, D.J. Hibbard, and M. Cotten, “High Resolution Heteronuclear Correlation NMR Spectroscopy of an Antimicrobial Peptide in Aligned Lipid Bilayers: Peptide-Water Interactions at the Water-Bilayer Interface,” Journal of the American Chemical Society, vol. 131, (no. 31), pp. 10830-1, Aug 2009.
[11]R. Fu, E.D. Gordon, D.J. Hibbard, and M. Cotten, “High resolution heteronuclear correlation NMR spectroscopy of an antimicrobial peptide in aligned lipid bilayers: peptide-water interactions at the water-bilayer interface,” J Am Chem Soc, vol. 131, (no. 31), pp. 10830-1, Aug 12 2009.
[12]J.P. Powers and R.E. Hancock, “The relationship between peptide structure and antibacterial activity,” Peptides, vol. 24, (no. 11), pp. 1681-91, Nov 2003.
[13]A. Colorni, A. Ullal, G. Heinisch, and E.J. Noga, “Activity of the antimicrobial polypeptide piscidin 2 against fish ectoparasites,” Journal of Fish Diseases, vol. 31, (no. 6), pp. 423-432, Jun 2008.
[14]X. Lauth, H. Shike, J.C. Burns, M.E. Westerman, V.E. Ostland, J.M. Carlberg, J.C. Van Olst, V. Nizet, S.W. Taylor, C. Shimizu, and P. Bulet, “Discovery and characterization of two Isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass,” Journal of Biological Chemistry, vol. 277, (no. 7), pp. 5030-5039, Feb 2002.
[15]E.J. Noga and U. Silphaduang, “Piscidins: A novel family of peptide antibiotics from fish,” Drug News & Perspectives, vol. 16, (no. 2), pp. 87-92, Mar 2003.
[16]U. Silphaduang and E.J. Noga, “Peptide antibiotics in mast cells of fish (vol 414, pg 268, 2001),” Nature, vol. 414, (no. 6865), pp. 710-710, Dec 2001.
[17]I. Mulero, E.J. Noga, J. Meseguer, A. Garcia-Ayala, and V. Mulero, “The antimicrobial peptides piscidins are stored in the granules of professional phagocytic granulocytes of fish and are delivered to the bacteria-containing phagosome upon phagocytosis,” Developmental and Comparative Immunology, vol. 32, (no. 12), pp. 1531-1538, 2008.
[18]W.J. Lin, Y.L. Chien, C.Y. Pan, T.L. Lin, J.Y. Chen, S.J. Chiu, and C.F. Hui, “Epinecidin-1, an antimicrobial peptide from fish (Epinephelus coioides) which has an antitumor effect like lytic peptides in human fibrosarcoma cells,” Peptides, vol. 30, (no. 2), pp. 283-290, Feb 2009.
[19]N. Papo, D. Seger, A. Makovitzki, V. Kalchenko, Z. Eshhar, H. Degani, and Y. Shai, “Inhibition of tumor growth and elimination of multiple metastases in human prostate and breast xenografts by systemic inoculation of a host defense-like lytic peptide,” Cancer Research, vol. 66, (no. 10), pp. 5371-5378, May 2006.
[20]R.F.A. Zwaal and A.J. Schroit, “Pathophysiologic implications of membrane phospholipid asymmetry in blood cells,” Blood, vol. 89, (no. 4), pp. 1121-1132, Feb 1997.
[21]H.M. Chen, W. Wang, D. Smith, and S.C. Chan, “Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells,” Biochimica Et Biophysica Acta-General Subjects, vol. 1336, (no. 2), pp. 171-179, Aug 1997.
[22]J.C. Hsu, L.C. Lin, J.T.C. Tzen, and J.Y. Chen, “Characteristics of the antitumor activities in tumor cells and modulation of the inflammatory response in RAW264.7 cells of a novel antimicrobial peptide, chrysophsin-1, from the red sea bream (Chrysophrys major),” Peptides, vol. 32, (no. 5), pp. 900-910, May 2011.
[23]V.G. Chinchar, L. Bryan, U. Silphadaung, E. Noga, D. Wade, and L. Rollins-Smith, “Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides,” Virology, vol. 323, (no. 2), pp. 268-275, Jun 2004.
[24]U. Silphaduang, A. Colorni, and E.J. Noga, “Evidence for widespread distribution of piscidin antimicrobial peptides in teleost fish,” Diseases of Aquatic Organisms, vol. 72, (no. 3), pp. 241-252, Oct 2006.
[25]S. Campagna, N. Saint, G. Molle, and A. Aumelas, “Structure and mechanism of action of the antimicrobial peptide piscidin,” Biochemistry, vol. 46, (no. 7), pp. 1771-1778, Feb 2007.


[1]T. Reichhardt, “Will souped up salmon sink or swim?,” Nature, vol. 406, (no. 6791), pp. 10-12, Jul 2000.
[2]M.A. Rahman, R. Mak, H. Ayad, A. Smith, and N. Maclean, “Expression of a novel piscine growth hormone gene results in growth enhancement in transgenic tilapia (Oreochromis niloticus),” Transgenic Res, vol. 7, (no. 5), pp. 357-69, Sep 1998.
[3]C.L. Hew, P.L. Davies, and G. Fletcher, “Antifreeze protein gene transfer in Atlantic salmon,” Mol Mar Biol Biotechnol, vol. 1, (no. 4-5), pp. 309-17, Aug-Oct 1992.
[4]T.T. Chen, K. Kight, C.M. Lin, D.A. Powers, M. Hayat, N. Chatakondi, A.C. Ramboux, P.L. Duncan, and R.A. Dunham, “Expression and inheritance of RSVLTR-rtGH1 complementary DNA in the transgenic common carp, Cyprinus carpio,” Mol Mar Biol Biotechnol, vol. 2, (no. 2), pp. 88-95, Mar-Apr 1993.
[5]R.H. Devlin, M. D''Andrade, M. Uh, and C.A. Biagi, “Population effects of growth hormone transgenic coho salmon depend on food availability and genotype by environment interactions,” Proc Natl Acad Sci U S A, vol. 101, (no. 25), pp. 9303-8, Jun 22 2004.
[6]J. de la Fuente, I. Guillen, R. Martinez, and M.P. Estrada, “Growth regulation and enhancement in tilapia: basic research findings and their applications,” Genet. Anal.-Biomol. Eng., vol. 15, (no. 3-5), pp. 85-90, Nov 1999.
[7]M.V. Abrahams and A. Sutterlin, “The foraging and antipredator behaviour of growth-enhanced transgenic Atlantic salmon,” Anim. Behav., vol. 58, pp. 933-942, Nov 1999.
[8]A.C. Wong and A.L. Van Eenennaam, “Transgenic approaches for the reproductive containment of genetically engineered fish,” Aquaculture, vol. 275, (no. 1-4), pp. 1-12, Mar 2008.
[9]S.Y. Hu, P.Y. Lin, C.H. Liao, H.Y. Gong, G.H. Lin, K. Kawakami, and J.L. Wu, “Nitroreductase-mediated Gonadal Dysgenesis for Infertility Control of Genetically Modified Zebrafish,” Mar. Biotechnol., vol. 12, (no. 5), pp. 569-578, Oct 2010.
[10]X.F. Pan, H.Y. Wan, W. Chia, Y. Tong, and Z.Y. Gong, “Demonstration of site-directed recombination in transgenic zebrafish using the Cre/loxP system,” Transgenic Res., vol. 14, (no. 2), pp. 217-223, Apr 2005.
[11]G. Golling, A. Amsterdam, Z.X. Sun, M. Antonelli, E. Maldonado, W.B. Chen, S. Burgess, M. Haldi, K. Artzt, S. Farrington, S.Y. Lin, R.M. Nissen, and N. Hopkins, “Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development,” Nature Genet., vol. 31, (no. 2), pp. 135-140, Jun 2002.
[12]B. Ciruna, G. Weidinger, H. Knaut, B. Thisse, C. Thisse, E. Raz, and A.F. Schier, “Production of maternal-zygotic mutant zebrafish by germ-line replacement,” Proc. Natl. Acad. Sci. U. S. A., vol. 99, (no. 23), pp. 14919-14924, Nov 2002.
[13]K. Abremski, R. Hoess, and N. Sternberg, “Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination,” Cell, vol. 32, (no. 4), pp. 1301-11, Apr 1983.
[14]K. Abremski and R. Hoess, “Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein,” J Biol Chem, vol. 259, (no. 3), pp. 1509-14, Feb 10 1984.
[15]C.S. Branda and S.M. Dymecki, “Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice,” Dev. Cell, vol. 6, (no. 1), pp. 7-28, Jan 2004.
[16]D.M. Langenau, H. Feng, S. Berghmans, J.P. Kanki, J.L. Kutok, and A.T. Look, “Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, (no. 17), pp. 6068-6073, Apr 2005.
[17]R. Thummel, C.T. Burket, J.L. Brewer, M.P. Sarras, L. Li, M. Perry, J.P. McDermott, B. Sauer, D.R. Hyde, and A.R. Godwin, “Cre-mediated site-specific recombination in zebrafish embryos,” Dev. Dyn., vol. 233, (no. 4), pp. 1366-1377, Aug 2005.
[18]K. Kawakami, A. Koga, H. Hori, and A. Shima, “Excision of the tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio,” Gene, vol. 225, (no. 1-2), pp. 17-22, Dec 28 1998.
[19]A. Koga, M. Suzuki, H. Inagaki, Y. Bessho, and H. Hori, “Transposable element in fish,” Nature, vol. 383, (no. 6595), pp. 30, Sep 5 1996.
[20]K. Kawakami and A. Shima, “Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio,” Gene, vol. 240, (no. 1), pp. 239-44, Nov 15 1999.
[21]K. Kawakami, “Tol2: a versatile gene transfer vector in vertebrates,” Genome Biol, vol. 8 Suppl 1, pp. S7, 2007.
[22]M.L. Suster, K. Sumiyama, and K. Kawakami, “Transposon-mediated BAC transgenesis in zebrafish and mice,” BMC Genomics, vol. 10, pp. 477-83, 2009.
[23]K. Kawakami, H. Takeda, N. Kawakami, M. Kobayashi, N. Matsuda, and M. Mishina, “A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish,” Dev Cell, vol. 7, (no. 1), pp. 133-44, Jul 2004.
[24]A. Urasaki, G. Morvan, and K. Kawakami, “Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition,” Genetics, vol. 174, (no. 2), pp. 639-49, Oct 2006.
[25]D.E. Mold, A.E. Dinitz, and D.R. Sambandan, “Regulation of zebrafish zona pellucida gene activity in developing oocytes,” Biol Reprod, vol. 81, (no. 1), pp. 101-10, Jul 2009.
[26]S.K. Gupta, S. Chakravarty, K. Suraj, P. Bansal, A. Ganguly, M.K. Jain, and B. Bhandari, “Structural and functional attributes of zona pellucida glycoproteins,” Soc Reprod Fertil Suppl, vol. 63, pp. 203-16, 2007.
[27]D. Onichtchouk, K. Aduroja, H.G. Belting, L. Gnugge, and W. Driever, “Transgene driving GFP expression from the promoter of the zona pellucida gene zpc is expressed in oocytes and provides marker for gonad differentiation in an early zebrafish,” Dev. Dyn., vol. 228, (no. 3), pp. 393-404, Nov 2003.
[28]R. Rey, C. Lukas-Croisier, C. Lasala, and P. Bedecarras, “AMH/MIS: what we know already about the gene, the protein and its regulation,” Mol. Cell. Endocrinol., vol. 211, (no. 1-2), pp. 21-31, Dec 2003.
[29]J. von Hofsten and P.E. Olsson, “Zebrafish sex determination and differentiation: Involvement of FTZ-F1 genes,” Reprod. Biol. Endocrinol., vol. 3, Nov 2005.
[30]K.S. Skaar, R.H. Nobrega, A. Magaraki, L.C. Olsen, R.W. Schulz, and R. Male, “Proteolytically Activated, Recombinant Anti-Mullerian Hormone Inhibits Androgen Secretion, Proliferation, and Differentiation of Spermatogonia in Adult Zebrafish Testis Organ Cultures,” Endocrinology, vol. 152, (no. 9), pp. 3527-3540, Sep 2011.
[31]R.A. Rey, M. Musse, M. Venara, and H.E. Chemes, “Ontogeny of the Androgen Receptor Expression in the Fetal and Postnatal Testis: Its Relevance on Sertoli Cell Maturation and the Onset of Adult Spermatogenesis,” Microsc. Res. Tech., vol. 72, (no. 11), pp. 787-795, Nov 2009.
[32]C. Lasala, D. Carre-Eusebe, J.Y. Picard, and R. Rey, “Subcellular and molecular mechanisms regulating anti-Mullerian hormone gene expression in mammalian and nonmammalian species,” DNA Cell Biol., vol. 23, (no. 9), pp. 572-585, Sep 2004.
[33]S. Desagher, A. Osen-Sand, A. Nichols, R. Eskes, S. Montessuit, S. Lauper, K. Maundrell, B. Antonsson, and J.C. Martinou, “Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis,” J Cell Biol, vol. 144, (no. 5), pp. 891-901, Mar 8 1999.
[34]M. Crompton, “Bax, Bid and the permeabilization of the mitochondrial outer membrane in apoptosis,” Curr Opin Cell Biol, vol. 12, (no. 4), pp. 414-9, Aug 2000.
[35]S.Y. Hu, P.Y. Lin, C.H. Liao, H.Y. Gong, G.H. Lin, K. Kawakami, and J.L. Wu, “Nitroreductase-mediated gonadal dysgenesis for infertility control of genetically modified zebrafish,” Mar Biotechnol (NY), vol. 12, (no. 5), pp. 569-78, Oct 2010.
[36]N.D. Meeker, S.A. Hutchinson, L. Ho, and N.S. Trecle, “Method for isolation of PCR-ready genomic DNA from zebrafish tissues,” Biotechniques, vol. 43, (no. 5), pp. 610-614, Nov 2007.
[37]J.S. Yuan, A. Reed, F. Chen, and C.N. Stewart, “Statistical analysis of real-time PCR data,” BMC Bioinformatics, vol. 7, Feb 2006.
[38]S.A. Bustin, “Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays,” J. Mol. Endocrinol., vol. 25, (no. 2), pp. 169-193, Oct 2000.
[39]J.Y. Chen, M.J. Chiou, L.K. Chen, and J.L. Wu, “Molecular cloning and functional analysis of the zebrafish follicle-stimulating hormone (FSH)beta promoter,” Comp. Biochem. Physiol. B-Biochem. Mol. Biol., vol. 155, (no. 2), pp. 155-163, Feb 2010.
[40]K. Kawakami and T. Noda, “Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells,” Genetics, vol. 166, (no. 2), pp. 895-9, Feb 2004.
[41]E. Kratz, P.M. Eimon, K. Mukhyala, H. Stern, J. Zha, A. Strasser, R. Hart, and A. Ashkenazi, “Functional characterization of the Bcl-2 gene family in the zebrafish,” Cell Death Differ, vol. 13, (no. 10), pp. 1631-40, Oct 2006.
[42]P.M. Eimon, E. Kratz, E. Varfolomeev, S.G. Hymowitz, H. Stern, J. Zha, and A. Ashkenazi, “Delineation of the cell-extrinsic apoptosis pathway in the zebrafish,” Cell Death Differ, vol. 13, (no. 10), pp. 1619-30, Oct 2006.
[43]P.M. Eimon and A. Ashkenazi, “The zebrafish as a model organism for the study of apoptosis,” Apoptosis, vol. 15, (no. 3), pp. 331-49, Mar 2010.
[44]U.J. Pyati, A.T. Look, and M. Hammerschmidt, “Zebrafish as a powerful vertebrate model system for in vivo studies of cell death,” Semin Cancer Biol, vol. 17, (no. 2), pp. 154-65, Apr 2007.
[45]T. Yabu, S. Kishi, T. Okazaki, and M. Yamashita, “Characterization of zebrafish caspase-3 and induction of apoptosis through ceramide generation in fish fathead minnow tailbud cells and zebrafish embryo,” Biochem J, vol. 360, (no. Pt 1), pp. 39-47, Nov 15 2001.
[46]B. Sauer, “Inducible gene targeting in mice using the Cre/lox system,” Methods, vol. 14, (no. 4), pp. 381-92, Apr 1998.
[47]J.M. Bailey, B.A. Creamer, and M.A. Hollingsworth, “What a fish can learn from a mouse: principles and strategies for modeling human cancer in mice,” Zebrafish, vol. 6, (no. 4), pp. 329-37, Dec 2009.
[48]B.H. Zheng, A.A. Mills, and A. Bradley, “A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice,” Nucleic Acids Research, vol. 27, (no. 11), pp. 2354-2360, Jun 1 1999.
[49]H. Imai and Y. Nakagawa, “Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells,” Free Radic Biol Med, vol. 34, (no. 2), pp. 145-69, Jan 15 2003.
[50]C. Foresta, L. Flohe, A. Garolla, A. Roveri, F. Ursini, and M. Maiorino, “Male fertility is linked to the selenoprotein phospholipid hydroperoxide glutathione peroxidase,” Biol Reprod, vol. 67, (no. 3), pp. 967-71, Sep 2002.
[51]H. Imai, K. Narashima, M. Arai, H. Sakamoto, N. Chiba, and Y. Nakagawa, “Suppression of leukotriene formation in RBL-2H3 cells that overexpressed phospholipid hydroperoxide glutathione peroxidase,” J Biol Chem, vol. 273, (no. 4), pp. 1990-7, Jan 23 1998.
[52]H. Imai, N. Hakkaku, R. Iwamoto, J. Suzuki, T. Suzuki, Y. Tajima, K. Konishi, S. Minami, S. Ichinose, K. Ishizaka, S. Shioda, S. Arata, M. Nishimura, S. Naito, and Y. Nakagawa, “Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice,” J Biol Chem, vol. 284, (no. 47), pp. 32522-32, Nov 20 2009.
[53]A. Rodriguez-Mari, C. Canestro, R.A. Bremiller, A. Nguyen-Johnson, K. Asakawa, K. Kawakami, and J.H. Postlethwait, “Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis,” PLoS Genet, vol. 6, (no. 7), pp. e1001034, Jul 2010.
[54]A. Rodriguez-Mari, C. Wilson, T.A. Titus, C. Canestro, R.A. BreMiller, Y.L. Yan, I. Nanda, A. Johnston, J.P. Kanki, E.M. Gray, X.J. He, J. Spitsbergen, D. Schindler, and J.H. Postlethwait, “Roles of brca2 (fancd1) in Oocyte Nuclear Architecture, Gametogenesis, Gonad Tumors, and Genome Stability in Zebrafish,” PLoS Genet., vol. 7, (no. 3), Mar 2011.
[55]Y.C. Charng, “A one-time inducible transposon to create knockout mutants in rice,” Methods Mol Biol, vol. 847, pp. 369-77, 2012.
[56]M.J. Fraser, T. Ciszczon, T. Elick, and C. Bauser, “Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera,” Insect Mol Biol, vol. 5, (no. 2), pp. 141-51, May 1996.
[57]J.J. Maury, A.B. Choo, and K.K. Chan, “Technical advances to genetically engineering human embryonic stem cells,” Integr Biol (Camb), vol. 3, (no. 7), pp. 717-23, Jul 2011.
[58]S. Ding, X. Wu, G. Li, M. Han, Y. Zhuang, and T. Xu, “Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice,” Cell, vol. 122, (no. 3), pp. 473-83, Aug 12 2005.
[59]Z. Ivics, P.B. Hackett, R.H. Plasterk, and Z. Izsvak, “Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells,” Cell, vol. 91, (no. 4), pp. 501-10, Nov 14 1997.
[60]L. Mates, M.K. Chuah, E. Belay, B. Jerchow, N. Manoj, A. Acosta-Sanchez, D.P. Grzela, A. Schmitt, K. Becker, J. Matrai, L. Ma, E. Samara-Kuko, C. Gysemans, D. Pryputniewicz, C. Miskey, B. Fletcher, T. VandenDriessche, Z. Ivics, and Z. Izsvak, “Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates,” Nat Genet, vol. 41, (no. 6), pp. 753-61, Jun 2009.
[61]M.J. Fraser, J.S. Brusca, G.E. Smith, and M.D. Summers, “Transposon-mediated mutagenesis of a baculovirus,” Virology, vol. 145, (no. 2), pp. 356-61, Sep 1985.
[62]Z. Ivics, C.D. Kaufman, H. Zayed, C. Miskey, O. Walisko, and Z. Izsvak, “The Sleeping Beauty transposable element: evolution, regulation and genetic applications,” Curr Issues Mol Biol, vol. 6, (no. 1), pp. 43-55, Jan 2004.
[63]Z. Ivics, M.A. Li, L. Mates, J.D. Boeke, A. Nagy, A. Bradley, and Z. Izsvak, “Transposon-mediated genome manipulation in vertebrates,” Nat Methods, vol. 6, (no. 6), pp. 415-22, Jun 2009.
[64]D. Balciunas, K.J. Wangensteen, A. Wilber, J. Bell, A. Geurts, S. Sivasubbu, X. Wang, P.B. Hackett, D.A. Largaespada, R.S. McIvor, and S.C. Ekker, “Harnessing a high cargo-capacity transposon for genetic applications in vertebrates,” PLoS Genet, vol. 2, (no. 11), pp. e169, Nov 10 2006.
[65]T. VandenDriessche, Z. Ivics, Z. Izsvak, and M.K. Chuah, “Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells,” Blood, vol. 114, (no. 8), pp. 1461-8, Aug 20 2009.
[66]P.B. Hackett, D.A. Largaespada, and L.J. Cooper, “A transposon and transposase system for human application,” Mol Ther, vol. 18, (no. 4), pp. 674-83, Apr 2010.
[67]Z. Izsvak and Z. Ivics, “Sleeping beauty transposition: biology and applications for molecular therapy,” Mol Ther, vol. 9, (no. 2), pp. 147-56, Feb 2004.
[68]R. Thummel, C.T. Burket, J.L. Brewer, M.P. Sarras, Jr., L. Li, M. Perry, J.P. McDermott, B. Sauer, D.R. Hyde, and A.R. Godwin, “Cre-mediated site-specific recombination in zebrafish embryos,” Dev Dyn, vol. 233, (no. 4), pp. 1366-77, Aug 2005.
[69]X. Le, D.M. Langenau, M.D. Keefe, J.L. Kutok, D.S. Neuberg, and L.I. Zon, “Heat shock-inducible Cre/Lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish,” Proc Natl Acad Sci U S A, vol. 104, (no. 22), pp. 9410-5, May 29 2007.
[70]H. Feng, D.M. Langenau, J.A. Madge, A. Quinkertz, A. Gutierrez, D.S. Neuberg, J.P. Kanki, and A.T. Look, “Heat-shock induction of T-cell lymphoma/leukaemia in conditional Cre/lox-regulated transgenic zebrafish,” Br J Haematol, vol. 138, (no. 2), pp. 169-75, Jul 2007.
[71]S. Yoshikawa, K. Kawakami, and X.C. Zhao, “G2R Cre reporter transgenic zebrafish,” Dev Dyn, vol. 237, (no. 9), pp. 2460-5, Sep 2008.
[72]S.H. Seok, Y.R. Na, J.H. Han, T.H. Kim, H. Jung, B.H. Lee, A. Emelyanov, S. Parinov, and J.H. Park, “Cre/loxP-regulated transgenic zebrafish model for neural progenitor-specific oncogenic Kras expression,” Cancer Sci, vol. 101, (no. 1), pp. 149-54, Jan 2010.
[73]W.Y. Liu, Y. Wang, Y. Qin, Y.P. Wang, and Z.Y. Zhu, “Site-directed gene integration in transgenic zebrafish mediated by cre recombinase using a combination of mutant lox sites,” Mar Biotechnol (NY), vol. 9, (no. 4), pp. 420-8, Jul-Aug 2007.
[74]N.R. Love, R. Thuret, Y. Chen, S. Ishibashi, N. Sabherwal, R. Paredes, J. Alves-Silva, K. Dorey, A.M. Noble, M.J. Guille, Y. Sasai, N. Papalopulu, and E. Amaya, “pTransgenesis: a cross-species, modular transgenesis resource,” Development, vol. 138, (no. 24), pp. 5451-8, Dec 2011.





QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊