跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 10:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:binesh unnikrishnan
研究生(外文):Binesh Unnikrishnan
論文名稱:石墨烯型電化學感測器與生物感測器之設置與定性
論文名稱(外文):Fabrication and Characterization of Graphene Based Eletrochemical Sensors and Biosensors
指導教授:陳生明
指導教授(外文):Shen-Ming Chen
口試委員:曾添文張聰慧連萬福張文雄
口試委員(外文):Tian-Wen TsengTsong-Huei ChangWan-Fu LienWen-Hsiung Chang
口試日期:2012-07-16
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:108
中文關鍵詞:安培生物感測器酵素直接電化學奈米材料電催化
外文關鍵詞:Amperometric bio-sensorsEnzymeDirect electrochemistryNano MaterialsElectrocatalysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:556
  • 評分評分:
  • 下載下載:89
  • 收藏至我的研究室書目清單書目收藏:0
此篇論文探討了石墨烯及奈米材料修飾電極的製備及特性,可用以偵測各種重要的生物成分,例如葡萄糖、過氧化氫、Carbamazepine、對苯二酚、兒茶酚等等。氧化石墨烯的基面及邊緣有許多含氧的官能基,可讓酵素有效的固定其上。Graphene-glucose oxidase生物複合物及horseradish peroxidase生物複合物可使用簡單新穎的電化學方法合成,可用以發展葡萄糖及過氧化氫生物感測器。此感測器製作簡單、選擇性高、線性範圍好。首先graphene-enzyme生物複合薄膜合成於玻璃碳電極上。再將其放在pH5磷酸緩衝溶液中,使用電化學還原法將複合物內的氧化石墨烯還原為還原氧化石墨烯。石墨烯-單層奈米碳管(Graphene-SWCNT)複合物使電化學還原製備。此電化學感測器可用來偵測抗癲癇藥物Carbamazepine。Horse radish peroxidase multimer與 Carbodiimide耦合反應修飾於電極上,包含N-ethyl-Nʹ-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS)。HRP multimer 修飾電極對雙氧水有很好的電催化活性,偵測真實樣本也有很好的表現。

This thesis study report the fabrication and characterization of modified electrodes based on graphene, graphene oxide, reduced graphene oxide and single walled carbon nanotubes for the determination of various biologically important compounds such as glucose, hydrogen peroxide and carbamazepine. Graphene oxide has plenty of oxygen containing functional groups both at its basal plane and edges. The plenty of oxygen containing functional groups on graphene have been used for the effective immobilization of the enzymes. Graphene-glucose oxidase biocomposite and graphene-horse radish peroxidase biocomposite have been synthesized by a simple and novel electrochemical approach for the development of amperometric glucose and hydrogen peroxide biosensors. The sensors have the advantages of ease of fabrication, good selectivity and linear range of detection. In this method of fabrication, graphene-enzyme biocomposite has been synthesized and a thin film was prepared out of it on glassy carbon electrode and screen printed carbon electrode. Then the graphene oxide in the composite has been reduced to reduced-graphene oxide by electrochemical reduction in pH 5 phosphate buffer solution. Graphene-single walled carbon nanotube composite has been prepared by a simple solution method followed by electrochemical reduction. An efficient amperometric sensor has been developed for the determination of the epileptic drug Carbamazepine. Horse radish peroxidase multimer has been fabricated on graphene modified electrode with carbodiimide coupling reaction involving N-ethyl-Nʹ-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The HRP multimer modified electrode shows good electrocatalytic activity towards H2O2. It shows promising performance in real sample analysis.

Contents
Chapter 1 1
Introduction 1
1.1 Electrochemical biosensors 1
1.1.1 Enzymatic electrochemical biosensors 3
1.1.2 Why is enzyme immobilization important? 4
1.1.3 Different types of enzyme immobilization methods 4
1.1.4 Transducer materials used in biosensors 8
1.1.5 Chemically modified electrodes (CMEs) 9
1.1.6 Nanomaterials as enzyme immobilization matrices 9
1.1.7 Graphene as matrix for enzyme immobilization 10
1.1.8 Direct electrochemistry of enzymes on graphene 11
1.1.9 Non enzymatic biosensors 12
1.1.10 Graphene-Based non enzymatic Electrochemical Sensors 13
1.2 Objectives 15
1.3 Approaches 16
1.4 Instrumental techniques 17
1.4.1 Apparatus 17
1.4.2 Electrochemical techniques 18
Chapter 2 21
Fabrication and Characterization of a Highly Sensitive Amperometric Sensor Based on Electrochemically Reduced Graphene Oxide-Single-walled Carbon Nanotube Composite Film for Carbamazepine Determination 21
2.1 Introduction 21
2.2 Experimental 23
2.2.1 Apparatus 23
2.2.2 Reagents and materials 24
2.2.3 Preparation of GO and fabrication of ERGO-SWCNT composite modified electrode 24
2.3. Results and discussions 26
2.3.1 Characterization of ERGO-SWCNT composite film 26
2.3.2 Electrochemical behavior of CBZ at various electrodes 30
2.3.3 Amperometric determination of CBZ at ERGO-SWCNTcomposite 34
2.3.4 Reproducibility and CBZ determination in pharmaceutical preparations 37
2.4. Conclusions 38
Chapter 3 39
Synthesis of graphene-glucose oxidase biocomposite by a simple electrochemical approach for amperometric glucose biosensor 39
3.1. Introduction 39
3.2. Experimental 41
3.2.1. Apparatus 41
3.2.2. Reagents and materials 42
3.2.3. Fabrication of RGO-GOx modified electrode 42
3.3. Results and Discussions 43
3.3.1. GOx immobilization and electrochemical reduction of GO to RGO by single step approach 43
3.3.2. ATR spectroscopy and X-ray diffraction studies 45
3.3.3 Surface morphological studies 47
3.3.4 Direct electrochemistry of GOx at RGO modified GCE 49
3.3.5. Effect of scan rate 50
3.3.6. Effect of pH 51
3.3.7. Electrocatalytic activity of GCE/RGO-GOx towards glucose determination 53
3.3.8. Amperometric determination of glucose at RGO-GOx modified electrode 54
3.3.9. Selectivity, stability, reproducibility and repeatability of the biosensor 57
3.4. Conclusions 58
Chapter 4 59
Fabrication of Graphene - horseradish peroxidase multimer composite modified electrode for the determination of hydrogen peroxide 59
4.1. Introduction 59
4.2. Experimental 61
4.2.1. Materials 61
4.2.2. Apparatus 61
4.2.3. Fabrication of graphene-HRP multimer film modified electrode 62
4.3. Results and discussions 62
4.3.1 Preparation and characterization of HRP multimer on graphene modified electrode 62
4.3.2 Surface morphology of graphene and its composite films 68
4.3.3 Electrochemical and pH studies of graphene-HRP multimer film 71
4.3.4. Electrocatalytic response of H2O2 at graphene and its composite films 72
4.3.5. DPV and selectivity studies of H2O2 at graphene-HRP multimer film 74
4.3.6. Real sample analysis of H2O2 using graphene-HRP multimer film 76
4.4. Conclusion 76
Chapter 5 78
Hydrogen peroxide biosensor based on direct immobilization of horseradish peroxidase on electrochemically reduced graphene oxide modified screen printed carbon electrode 78
5.1 Introduction 78
5.2. Experimental 80
5.2.1 Apparatus 80
5.2.2. Reagents and Materials 80
5.2.3 Fabrication of ERGO-HRP modified electrode 81
5.3 Results and Discussion 81
5.3.1. Immobilization of HRP and electrochemical reduction of GO to RGO in a single step 81
5.3.2 EIS studies of various films 83
5.3.3. Surface morphology characterization of various electrodes 85
5.3.4. Direct electrochemistry of HRP 86
5.3.5 Influence of pH 89
5.3.6 Electrocatalysis of H2O2 at ERGO-HRP modified SPCE 90
5.3.7. Amperometric response of H2O2 at ERGO-HRP composite modified rotating disc electrode 91
5.3.8 Real sample analysis 93
5.3.9 Selectivity of the biosensor 94
5.4 Conclusion 94
References 96
Summary 109
List of publications 111
List of conference attended 114



References

[1]D. Grieshaber, R. MacKenzie, J. Vörös and E. Reimhult, Sensors, 8 (2008) 1400-1458.
[2]D. R. Thevenot, K. Toth, R. A. Durst and G. S. Wilson, Biosens. Bioelectron., 16 (2001) 121-131.
[3]N. J. Ronkainen, H. B. Halsall, and W. R. Heineman, Chem. Soc. Rev., 39 (2010) 1747.
[4]J. Wang, Electroanal., 17 (2005) 7.
[5]G. A. Mostafa, The Open Electrochemistry Journal, 2 (2010) 22.
[6]W. Tischer and F. Wedekind, Immobilized enzymes: Methods and applications, Biocatalysis from Discovery to Application Topics in Current Chemistry, 200 (1999) 96.
[7]Z. Zhao and H. Jianf, biosensors, edited by P.A.Serra, (2010) 1.
[8]T. Godjevargova, R. Nenkova and N. Dimova, Macromol. Biosci., 5 (2005) 760–766.
[9]H. Huang, N. Hu, Y. Zeng and G. Zhou, Anal. Biochem., 308 (2002) 141.
[10]H. Y. Lu, Z. Li and N. F. Hu, Biophys. Chem., 104 (2003) 623.
[11]L. S. Wan, B. B. Ke and Z. K. Xu, Enzyme Microb., Technol. 42 (2008) 332.
[12]R. A. Sheldon, Adv. Synth. Catal., 349 (2007) 1289.
[13]M. I. Prodromidis and M. I. Karayannis, Electroanal., 14 (2002) 241.
[14]J. M. Zen, A. S. Kumar and D. M. Tsai, Electroanal., 15 (2003) 1073.
[15]L. S. Wan, B. B. Ke, J. Wu and Z. K. Xu, J. Phys. Chem. C, 111 (2007) 14091.
[16]P. A. Prakash, U. Yogeswaran and S. M. Chen, Sensors, 9 (2009) 1821.
[17]J. Kim, H. Jia and P. Wang, Biotechnol. Adv., 24 (2006) 296.
[18]F. Patolsky, Y. Weizmann and I. Willner, Angew. Chem. Int. Ed., 43 (2004) 2113.
[19]X. Luo, A. J. Killard and M. R. Smyth, Electroanal., 18 (2006) 1131.
[20]A. K. Geim and K. S. Novoselov, Nat. Mater., 6 (2007) 183.
[21]S. Park and R. S. Ruoff, Nat. Nanotechnol., 4 (2009) 217.
[22]M. Segal, Nat. Nanotechnol., 4 (2009) 611.
[23]M. Zhou, Y. M. Zhai and S. J. Dong, Anal. Chem., 81 (2009) 5603.
[24]C. S. Shan, H. F. Yang, J. F. Song, D. X. Han, A. Ivaska and L.Niu, Anal. Chem., 81 (2009) 2378.
[25]X. H. Kang, J. Wang, H. Wu, A. I. Aksay, J. Liu and Y. H. Lin, Biosens. Bioelectron., 25 (2009) 901.
[26]A. Ansari, P. R. Solanki, A. Kaushik and B. D. Malhotra, Nanostructured materials for electrochemical biosensors, Nova publishers, Inc. 2009, 213.
[27]W. J. Zhang and G. X. Li, Anal. Sci., 20 (2004) 603.
[28]Q. Zeng, J. Cheng, L.Tang, X. Liu, Y. Liu, J. Li and J. Jiang, Adv. Funct. Mater., 20 (2010) 3366–3372.
[29]A. J. Arvia, R. C. Salvarezza and W. E. Triaca, J. New Mater. Electrochem. Syst., 7 (2004) 133-143.
[30]P. Balbuena and V. Subramanian, Theory and Experiment in Electrocatalysis, Modern Aspects of Electrochemistry 50, DOI 10.1007/978-1-4419-5594-4-2.
[31]J. Koresh and A. Soffer, J. Electrochem. Soc., 124 (1997) 1379.
[32]D. R. Rolison, Science, 299 (2003) 1698.
[33]L. Li, Z. Du, S.Liu, Q. Hao, Y. Wang, Q. Li and T.Wang, Talanta, 82 (2010) 1637-1641.
[34]R. L. McCreery, Chem. Rev., 108 (2008) 2646.
[35]H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. H. -Alonso, D. H. Adamson, R. K. P. homme, R. Car, D. A. Saville and I. A. Aksay, J. Phys. Chem. B, 110 (2006) 8535.
[36]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon, 45 (2007) 1558.
[37]C. E. Banks, T. J. Davies, G. G. Wildgoose and R. G. Compton, Chem. Commun., (2005) 829.
[38]C. Punckt, M. A. Pope, J. Liu, Y. Lin and I. A. Aksay, Electroanal., 22 (2010) 2834-3841.
[39]L. H. Tang, Y. Wang, Y. M. Li, H. B. Feng, J. Lu and J. H. Li, Adv. Funct. Mater., 19 (2009) 2782.
[40]N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi and H. Marchetto, Adv.Funct. Mater., 18 (2008) 3506.
[41]S. P.Kounaves, Voltammetric techniques, Handbook of Instrumental Techniques for Anal. Chem., 709 (1997) 717.
[42]J. F. Rusling and S. L. Suib, Adv. Mater., 6 (1994) 922.
[43]G. Denuault, Ocean Sci. Discuss, 6 (2009) 1857
[44]U. Guth, W. Vonau and J. Zosel, Meas. Sci. Technol., 20 (2009) 042002.
[45]J. R. Macdonald, Annals of Biomedical Engineering, 20 (1992) 289
[46]E. Katz and I. Willner, Electroanal., 15 (2003) 913.
[47]R. H. Mattson, Epilepsy & Behavior, 3 (2002) S9–S13.
[48]A. B. Ettinger and C. E. Argoff, Neurotherapeutics, 4 (2007) 75-83.
[49]J. M. Pellock, Epilepsy & Behavior, 3 (2002) S14–S17.
[50]H. Stefan and T. J. Feuerstein, Pharmacology & Therapeutics, 113 (2007) 165-183.
[51]Y. Zhang, S.U. Geissen and C. Gal, Chemosphere, 73 (2008) 1151–1161.
[52]M. D. G. García, F. C. Canada, M. J. Culzonia, L. V. Candioti, G. G. Siano, H. C. Goicoechea and M. M. Galerab, J. Chromatogr. A, 1216 (2009) 5489–5496.
[53]A. Veiga, A. Dordio, A. J. P. Carvalho, D. M. Teixeira and J. G. Teixeira, Anal. Chim. Acta, 674 (2010) 182-189.
[54]M. A. G. Garcia, O. D. Renedo, A. A. Lomillo and M. J. A. Martinez, Sensors Letters, 7 (2009) 586-591.
[55]S. Atkins, J. M. Sevilla, M. Blazquez, T. Pineda and J. G. Rodriguez, Electroanalysis, 22 (2010) 2961-2966.
[56]E. L. K. Chng and M. Pumera, Electrochem. Commun., 13 (2011) 781–784.
[57]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306 (2004) 666-669.
[58]C. N. R. Rao, A. K. Sood, R. Voggu and K. S. Subrahmanyam, J. Phys. Chem. Lett., 1 (2010) 572–580.
[59]K. S. Novoselov, D. Jiang , F. Schedin , T. J. Booth , V. V. Khotkevich , S. V. Morozov and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A., 102 (2005) 10451-10453.
[60]W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80 (1958) 1339.
[61]H. He, J. Klinowski, M. Forster and A. Lerf, Chem. Phys. Lett., 287 (1998) 53–56.
[62]S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen and R. S. Ruoff, J. Mater. Chem., 16 (2006) 155–158.
[63]D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, Chem., Soc. Rev. 39 (2010) 228.
[64]L. Liu, D. Yu, C. Zeng, Z. Miao and L. Dai, Langmuir, 26 (2010) 6158-6160.
[65]H. L. Guo, X. F. Wang, Q. Y. Qian, F. B. Wang and X. H. Xia, ACS Nano, 3 (2009) 2653-2659.
[66]M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng and H. L. Poh, Trends Anal. Chem., 29 (2010) 954.
[67]C. B. Jacobs, M. J. Peairs and B. J. Venton, Anal. Chim. Acta, 662 (2010) 105–127.
[68]L. Vaisman, H. D. Wagner and G. Marom, Adv. Colloid Interface Sci., 128–130 (2006) 37–46.
[69]L. Qiu, X. Yang, X. Gou, W. Yang, Z. F. Ma and G. G. Wallace and D.Li, Chem. Eur. J., 16 (2010) 10653 – 10658.
[70]C. Zhang, L. Ren, X. Wang and T. Liu, J. Phys. Chem. C, 114 (2010) 11435–11440.
[71]G. Wang, X. Shen, J. Yao and J. Park, Carbon, 47 (2009) 2049–2053.
[72]J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull and J. Huang, J. Am. Chem. Soc., 132 (2010) 8180–8186.
[73]X. Dong, G. Xing, M. B. C. -Park, W. Shi , N. Xiao, J. Wang, Q. Yan , T.C. Sum , W. Huang and P. Chen, Carbon, 49 (2011) 5071 –5078.
[74]S. H. Aboutalebi, A. T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H. K. Liuac and S. X. Doua, Energy Environ. Sci., 4 (2011) 1855–1865.
[75]H. O. Finklea, D. A. Snider and J. Fedyk, Langmuir, 9 (1993) 3660-3667.
[76]S. S. Kalanur and J. Seetharamappa, Anal. Lett., 43 (2010) 618–630.
[77]E. Laviron, J. Electroanal. Chem., 122 (1981) 37–44.
[78]A.J. Bard and L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, Wiley, New York, 1980.
[79]A. Radoi, D. Compagnone, E. Devic and G. Palleschi, Sens. Actuators, B 121 (2007) 501-506.
[80]H. Y. Wang, M. L. Pan, Y. L. O. Su, S. C. Tsai, C. H. Kao, S. S. Sun and W. Y. Lin, J Anal. Chem., 66 (2011) 415–420.
[81]S. S. Kalanur, J. Seetharamappa and S. Balakrishnan, Electrochim. Acta, 56 (2011) 5295-5301.
[82]S. Pruneanu, F. Pogacean, A. R. Biris, S. Ardelean, V. Canpean, G. Blanita, E. Dervishi and A. S. Biris, J Phy. Chem. C, 115 (2011) 23387–23394.
[83]L. H. Liu, C. Q. Duan and Z. N. Gao, J. Serb. Chem. Soc., 76 (2011) 1–17.
[84]L. H. Jody, M. A. Ellen and W. K. Ward, J. Diabetes Sci. Technol., 1 (2007) 18-27.
[85]X. Yang, L. Hua, H. Gong and S. N. Tan, Anal. Chim. Acta, 478 (2003) 67–75.
[86]H. Cao, Y. Zhu, L. Tang, X. Yang and C. Li, Electroanalysis, 20 (2008) 2223-2228.
[87]B. Fang, C. Zhang, G. Wang, M. Wang and Y. Ji, Sens. Actuators, B. 155 (2011) 304-310.
[88]S. Bharathi, and M. Nogami, Analyst, 126 (2001) 1919-1922.
[89]T. T. Baby, S. S. J. Aravind, T. Arockiadoss, R. B. Rakhi and S. Ramaprabhu, Sens. Actuators, B. 145 (2010) 71-77.
[90]F. Ekiz, M.Yuksel, A. Balan, S.Timur and L.Toppare, Macromol. Biosci., (2010) 1557-1565.
[91]N. C. Foulds and C. R. Lowe, J. Chem. Soc. Faraday Trans. 82 (1986) 1259-1265.
[92]S. Alwarappan, C. Liu, A. Kumar and C. Z. Li, J. Phys. Chem. C, 114 (2010) 12920–12924.
[93]J. L. Blin, C. Gerardin, C. Carteret, L. Rodehuser, C. Selve and M. J.Stebe, Chem. Mater., 17 (2005) 1479-1486.
[94]W. Z. Jia, K. Wang, Z. J. Zhu, H. T. Song and X. H. Xia, Langmuir, 23 (2007) 11896-11900.
[95]Q. Chen, G. L. Kenausis and A. Heller, J. Am. Chem. Soc., 120 (1998) 4582-4585.
[96]Y. Lin, F. Lu, Y. Tu and Z. Ren, Nano Lett., 4 (2004) 191-195.
[97]A. P. Periasamy, Y. J. Chang and S. M. Chen, Bioelectrochemistry, 80 (2011) 114-120.
[98]K. Zhou, Y. Zhu, X. Yang and C. Li, Electroanal., 22 (2010) 259-264.
[99]S. Alwarappan, A. Erdem, C. Liu and C. L. Li, J. Phys. Chem. C, 113 (2009) 8853–8857.
[100]S. Alwarappan, R. K. Joshi, M. K. Ram and A. Kumar, Appl. Phy. Lett., 96 (2010) 263702.
[101]Y. Fu, P. Li, L. Bu, T. Wang, Q. Xie, J. Chen and S. Yao, Anal. Chem., 83 (2011) 6511-6517.
[102]C. G. Xian and C. M. Li, Phys. Chem. Chem. Phys., 12 (2010) 12153-12159.
[103]T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim and J. H. Lee, Biosens. Bioelectron., 26 (2011) 4637-4648.
[104]D. Li, M. B. Muller, S. Gilje, R. B. Karner and G. G.Wallace, Nat. Nanotechnol., 3 (2008) 101-105.
[105]R. Y. N. Gengler, A. Veligura, A. Enotiadis, E. K. Diamanti, D. Gournis, C. Jozsa, B. J. V. Wees and P. Rudolf, Small, 6 (2010) 35.
[106]J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li and M. Ye, Chem. Mater., 21 (2009) 3514.
[107]P.Song, X. Zhang, M. Sun, X. Cui and Y. Lin, RSC Advances, 2 (2012) 1168–1173.
[108]P. Wu, Q. Shao, Y. Hu, J. Jin, Y. Yin, H. Zhang and C. Cai, Electrochim. Acta, 55 (2010) 8606-8614.
[109]S. Liu, J. Tian, L. Wang, Y. Luo, W. Lu and X. Sun, Biosens. Bioelectron., 26 (2011) 4491-4496.
[110]M. H. Yang, B. G. Choi, H. Park, W. H. Hong, S. Y. Lee and T. J. Park Electroanalysis, 22 (2010) 1223-1228.
[111]H. Yin, Y. Zhou, X. Meng, K. Shang and S. Ai, Biosens. Bioelectron., 30 (2011) 112-117.
[112]Z. Wang, X. Zhou, J. Zhang, F. Boey and H. Zhang, J. Phys. Chem. C, 113 (2009) 14071-14075.
[113]J. Wang and M. Musameh, Analyst, 128 (2003) 1382-1385.
[114]J. Li, Y. B. Wang, J. D. Qiu, D. C. Sun, X. H. Xia, Anal. Bioanal. Chem., 383 (2005) 918-922.
[115]N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. R. Mallouk, S. A.Chizhik, E.V. Buzaneva and A. D. Gorchinskiy, Chem. Mater., 11 (1999) 771-778.
[116]Y. Jiang, Q. Zhang, F. Li and L. Niu, Sens. Actuators B., 161 (2012) 728-733.
[117]H. Durliat, M. B. Barrau and M. Comtat, Bioelectrochem. Bioenerg., 19 (1988) 413–423.
[118]E. Laviron, J. Electroanal. Chem., 101 (1979) 19–28.
[119]R. Garjonyte and A. Malinauskas, Sens. Actuators B., 56 (1999) 85–92.
[120]J. Wang, Chem. Rev., 108 (2008) 814-825.
[121]A. J. Bard and L. R. Faulkner, 2nd ed., John Wiley & Sons, Inc., (2001) 331.
[122]H. Gu, Y. Yu, X. Liu, B. Ni, T. Zhou and G. Shi, Biosens. Bioelectron., 32 (2012) 118– 126.
[123]N. Cheng, H. Wang, X. Li, X. Yang and L. Zhu, American Journal of Analytical Chemistry, 3 (2012) 312-319.
[124]J. D. Qiu, J. Huang, R. P. Liang, Sens. Actuators B., 160 (2011) 287-294.
[125]A. Ambrosi and M. Pumera, Chem. A Euro. J., 16 (2010) 10946-10949.
[126]J. Li, S. Guo, Y. Zhai and E. Wang, Electrochem. Comm., 11 (2009) 1085-1088.
[127]Y. Wang, Y. Li, L. Tang, J. Lu and J. Li, Electrochem. Comm., 11 (2009) 889-892.
[128]Y. R. Kim, S. Bong, Y. J. Kang, Y.Yang, R. K. Mahajan and J. S. Kim, Biosens. Bioelectron., 25 (2010) 2366-2369.
[129]R. Huang and N. Hu, Bioelectrochem., 54 (2001) 75-81.
[130]Z. J. Wang, M. Y. Li, P. P. Su, Y. J. Zhang and L. Niu, Electrochem. Comm., 10 (2008) 306-310.
[131]P. A. MacCarthy and A. M. Shah, Coron. Artery Dis., 14 (2003) 109-113.
[132]R. Rodrigo and G. Rivera, Free Radic. Biol. Med., 33 (2002) 409-422.
[133]W. Chen, S. Cai, Q. Q. Ren, W. Wen and Y. D. Zhao, Analyst, 137 (2012) 49-58.
[134]M. Goldberg, M. Grootveld, E. Lynch, Clin. Oral Invest., 14 (2010) 1-10.
[135]E. Kim, K. Kim, H. Yang, Y. T. Kim and J. Kwak, Anal. Chem., 75 (2003) 5665-5672.
[136]M. Delvauxa, A. Walcarius and S. Demoustier-Champagne, Anal. Chim. Acta, 525 (2004) 221-230.
[137]Z. Matharu, P. Pandey, M. K. Pandey, V. Gupta and B. D. Malhotra, Electroanal., 21 (2009) 1587-1596.
[138]M. J. B. Wissink, R. Beernink, J. S. Pieper, A. A. Poot, G. H. M. Engbers and T. Beugeling, Biomaterials., 22 (2001) 151-163.
[139]M. J. van Luyn, P. B. V. Wachem, L. O. Damink, P. J. Dijkstra, J. Feijen and P. Nieuwenhuis, J. Biomed. Mater. Res., 26 (1992) 1091-1110.
[140]P. B. van Wachem, M. J. V. Luyn, L. H. O. Damink, P. J. Dijkstra, J. Feijen and P. Nieuwenhuis, Int. J Artif. Organs, 17 (1994) 230-239.
[141]P. B. V. Wachem, M. J. van Luyn, L. H. O. Damink, P. J. Dijkstra, J. Feijen and P. Nieuwenhuis, J. Biomed. Mater. Res., 28 (1994) 353-263.
[142]Soft matter gradient and surfaces - Methods and applications., Edited by Jan Genzer, John Wiley & Sons, Inc., New Jersey, 2012, ISBN: 978-1-1181-6607-9.
[143]G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart and R. K. Belew, J. Comp. Chem., 19 (1998) 1639-1662.
[144]J. Fuhrmann, A. Rurainski, H. P. Lenhof and D. Neumann, J. Comp. Chem., 31 (2010) 1911-1918.
[145]H. O. Finklea, D. A. Snider and J. Fedyk, Langmuir, 9 (1993) 3660-3667.
[146]A. Das, B. Chakraborty and A. K. Sood, Bull. Mater. Sci., 31 (2008) 579–584.
[147]R. S. Dey and C. R. Raj, J. Phys. Chem. C, 114 (2010) 21427-21433.
[148]C. C. Chen and Y. Gu, Biosen. Bioelectron., 23 (2008) 765-770.
[149]D. Shan, Q. B. Li, S. N. Ding, J. Q. Xu, S. Cosnier and H. G. Xue, Biosen. Bioelectron., 26 (2010) 536-541.
[150]X. W. Liu, Z. J. Yao, Y. F. Wang and X. W. Wei, Colloids Surf. B, 81 (2010) 508-512.
[151]Y. Zhang, X. Sun, L. Zhu, H. Shen and N. Jia, Electrochim. Acta, 2011, 56, 1239-1245.
[152]S. A. Kumar, S. F. Wang, Y. T. Chang, H. C. Lu and C. T. Yeh, Colloids Surf. B, 82 (2011) 526-531.
[153]A. K. Yagati, T. Lee, J. Min and J. W. Choi, Bioelectrochem., 80 (2011) 169-174.
[154]Z. Yin, J. Wu and Z. Yang, Biosens. Bioelectron., 26 (2011) 1970-1974.
[155]Y. J. Lee, J. Y. Park, Y. Kim and J. W. Ko, Curr. Appl Phys., 11 (2011) 211-216.
[156]S. Han, Y. Yuan, L. Hu and G. Xu, Electrochem. Comm., 12 (2010) 1746-1748.
[157]X. Kong, J. Zhao, J. Han, D. Zhang, M. Wei and X. Duan, Electrochim. Acta, 56 (2011) 1123-1129.
[158]F. Li, Y. Feng, L. Yang and S. Liu, Talanta, 83 (2010) 205-209.
[159]E. Linley, S. P. Denyer, G. McDonnell, C. Simons and J. Y. Maillard, J Antimicrob. Chemother., 67 ( 2012) 1589–1596.
[160]Y. Komazaki, T. Inoue and S. Tanaka, Analyst, 126 (2001) 587.
[161]Y. Deng and Y. Zuo, Atmos. Environ., 33 (1999) 1469.
[162]T. Tanaikai, A. Sakuragawa, and T. Okutani, Anal. Sciences, 16 (2000) 275.
[163]E. A. Mazzio and K. F. A. Soliman, J. Appl. Toxicol., 24 (2004) 99.
[164]X. B. Lu, J. H. Zhou, W. Lu, Q. Liu and J. H. Li, Biosens. Bioelectron., 23 (2008) 1236.
[165]X. H. Shu, Y. Chen, H. Y. Yuan, S. F. Gao and D. Xiao, Anal. Chem., 79 (2007) 3695.
[166]Y. X. Ci and F. Wang, J. Anal. Chem., 339 (1991) 46-49.
[167]A. S. Rad, A. Mirabi, E. Binaian and H. Tayebi, Int. J. Electrochem. Sci., 6 (2011) 3671 – 3683.
[168]Y. H. Wu and S. S. Hu, Microchim. Acta, 159 (2007) 1.
[169]L. Gorton, Electroanal., 7 (1995) 23.
[170]H. B. Dunford, Heme Peroxidases; Wiley: New York, 1999.
[171]S. V. Dzyadevych, V. N. Arkhypova, A. P. Soldatkin, A. V. Elskaya, C. Martelet and N. J. -Renault, ITBM-RBM, 29 (2008) 171.
[172]S. Ledru, N. Ruille and M. Boujtita, Biosens. Bioelectron., 21 (2006) 1591.
[173]J. Wang, L. Wang, J. Di and Y. Tu, Talanta, 77 (2009) 1454.
[174]A. P. Periasamy, Y. H. Ho and S. M. Chen, Biose. Bioelectron., 29(2011) 151-158.
[175]A. P. Periasamy, S. Yang and S. M. Chen, Talanta, 87 (2011) 15-23.
[176]S. W. Ting, A. P. Periasamy, S. M. Chen and R. Saraswathi, Int. J. Electrochem. Sci., 6 (2011) 4438-4453.
[177]Y. L. Yang, B. Unnikrishnan and S. M. Chen, Int. J. Electrochem. Sci., 6 (2011) 3743-3753
[178]A. P. Periasamy, S. W. Ting and S. M. Chen, Int. J. Electrochem. Sci., 6 (2011) 2688-2709.
[179]J. Y. Yang, Y. Li, S. M. Chen and K. C. Lin, Int. J. Electrochem. Sci., 6 (2011) 2235-2245.
[180]K. C. Lin, T. H. Tsai and S. M. Chen, Biosens. Bioelectron., 26 (2010) 608-614.
[181]G. K. Ahirwal and C. K. Mitra, Sensors, 9 (2009) 881-894.
[182]J. J. Feng, G. Zhao, J. J. Xu and H. Y. Chen, Anal. Biochem., 342 (2005) 280-286.
[183]Y. Yin, Y. Lü, P. Wu and C. Cai, Sensors, 5 (2005), 220-234.
[184]S. Cao , R. Yuan, Y. Chai, L. Zhang, X. Li and F. Gao, Bioprocess Biosyst. Eng. 30 (2007) 71–78.
[185]F. Zhang, B. Zheng, J. Zhang, X. Huang, H. Liu, S. Guo and J. Zhang, J. Phys. Chem. C, 114 (2010) 8469–8473.
[186]Q. Lu, X. Dong, L. J. Li and X. Hu, Talanta, 82 (2010) 1344–1348.
[187]M. Li, S. Xu, M. Tang, L. Liu, F. Gao and Y. Wang, Electrochim. Acta, 56 (2011) 1144-1149.
[188]B. Unnikrishnan, S. Palanisamy and S. M. Chen, Biosens. Bioelectron., (2012) http://dx.doi.org/10.1016/j.bios.2012.06.045.
[189]R. A. Kamin and G. S. Willson, Anal. Chem., 52 (1980) 1198–1205.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊