跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 06:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭旭惠
研究生(外文):Hsu-Hui Cheng
論文名稱:液相非熱電漿技術備制奈米級N-doped TiO2降解偶氮染料並結合陶瓷膜分離/回收光觸媒之研究
論文名稱(外文):Preparation of N-doped TiO2 Nanocatalysts by LPNTP Technique for Decolorization of Azo Dye with the Catalyst Separation/Recovering System using Ceramic Membrane
指導教授:陳孝行陳孝行引用關係
指導教授(外文):Shiao-Shing Chen
口試委員:陳永枝黃文鑑張木彬曾昭衡張添晉
口試委員(外文):Yung-Chih ChenWinn-Jung HuangMoo-Been ChangChao-heng TsengTien-Chin Chang
口試日期:2011-12-07
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:158
中文關鍵詞:液相非熱電漿含氮二氧化鈦可見光偶氮染料陶瓷薄膜
外文關鍵詞:Liquid-phase non-thermal plasmaN-dope TiO2Visible lightAzo dyesCeramic membranes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
商業級之二氧化鈦 (Degussa P-25) 及氯化銨 (NH4Cl) 粉末混和後,放置於液相非熱電漿反應系統中,藉以備製出淡黃色之含氮二氧化鈦光觸媒 (TiOxNy);並於可見光下應用偶氮染料 (Acid Orange 7) 進行光催化降解試驗。液相非熱電漿技術之優點即可於常溫常壓下,快速備製出含氮二氧化鈦光觸媒,其原理即應用高壓放電予瞬間產生一強烈之電場與伴隨之UV光,促使TiO2受到低於臨界波長的光線照射後,可激發價帶 (valance band) 電子躍遷至傳導帶 (conduction band) 而產生電子-電洞對,更進而將TiO2中之O原子順利與N原子進行置換,以降低光觸媒之能隙,備製出含氮二氧化鈦光觸媒。除可同步改善光觸媒於可見光源下之光催化效益,同時亦發展一新的連續式光催化反應槽;亦更進一步利用UF陶瓷薄膜 (孔徑為10 nm) 系統回收TiOxNy之光觸媒顆粒,藉由反覆清洗方式再次循環使用。不但符合綠色科技及能源之趨勢,亦達到資源「零浪費」的目標。
其研究結果顯示備製TiOxNy光觸媒藉由液相非熱電漿系統於常溫常壓下僅需40分鐘之備制時間,且最佳備制條件為DP-25與NH4Cl氯化銨之比例為0.6:3.6 (g/ ml);此外,依據ESCA、EDS及UV/Visible分析結果得知:樣品於電漿製備40分鐘即能分析出NH4+之N原子摻雜於二氧化鈦表面上,並藉由UV/Visible觀察到含氮二氧化鈦之吸收光譜皆位移至可見光區域 (>400nm),能隙從原本3.2eV(DP-25)降低至2.82eV (TiOxNy),亦由XRD分析中發現,常溫常壓放電過程 (13.5W、40min) 並不會改變二氧化鈦晶相,仍舊維持原來Anatase晶相。製備出之TiOxNy於可見光下進行偶氮染料光催化降解試驗,經10小時之批次試驗後,氮掺雜比為TiO2:NH4Cl = 1:6之含氮光觸媒,其反應速率常數為0.1519 hr-1;已明顯優於DP-25之反應速率常數 0.045 hr-1之光催化活性,其TiOxNy光催化反應速率為DP-25的3.4倍。
在連續式可見光光催化系統中,水力停留時間控制在10小時,經反應16小時後,隨著曝氣含氧量增加去除效果亦增加,當系統內曝氣含氧量達40% 時去除效果達62%。此外,隨著本研究光觸媒添加量增加反應效果亦增加,於光觸媒添加量為0.5 g/L時,反應去除率達96%,其pH = 2時反應去除效果為最佳。因達本研究設訂之光催化效果目標,故未在持續添加其光觸媒之量,使致系統內未發生所謂之遮蔽現象(screening effect)。在陶瓷薄膜回收部分,反應在60分鐘之前,光觸媒TiOxNy顆粒回收率已達64%以上,在80分鐘後,光觸媒TiOxNy顆粒回收率超過83 %以上,當系統操作超過90分鐘以上,則回收率可達99.5%以上,且光觸媒於陶瓷膜分離程序中,光觸媒TiOxNy顆粒可被完全分離濃縮。回收後之TiOxNy顆粒經光催化再利用後,仍可反覆處理11次之偶氮染料廢水,但經回收多次後之光觸媒,因表面被染料分子慢慢佔據,進而產生所謂之觸媒劣化現象(catalyst deactivation),直接影響觸媒的重複使用性。若於系統加入曝氣條件,則能延緩光觸媒毒化現象發生,提高光觸媒回收再利用效率,亦讓光觸媒使用壽命可再次被延長。


Yellow-colored N-doped TiO2 (TiOxNy) powders, synthesized by the liquid-phase non-thermal plasma (LPNTP) technique, were produced from a mixed aqueous solution, containing commercial titanium dioxide (Degussa P-25) and an N-precursor (ammonium chloride, NH4Cl), and utilized for photodegradation of C. I. Acid Orange 7 (AO7) under visible light. The benefit of such technology is mainly on rapid production of visible light photocatalyst N-doped TiO2 under room temperature and pressure. A high voltage applied to the electrodes was to generate a strong and transient electric field, and the discharge emit ultraviolet light of sub-critical wavelengths was used to illuminate TiO2 producing electron-hole pairs by exciting electrons from the valance band to the conduction band. These promote the replacement of O atoms with N atoms to narrow the band gap of photocatalyst. To enhance the photocatalytic efficiency of TiOxNy under visible light, this study also developed a new continuous-flow photoreactor by further combining a UF ceramic membrane system to recover the TiOxNy particles in the suspension system. The recovered TiOxNy particles were subjected to repetitive cleaning and reuse. This not only complies with the practices of green technology and energy, but also achieves the aim of "zero waste".

The TiOxNy photocatalysts obtained through the LPNTP process were characterized with UV-Vis spectrophotometer, XRD, ESCA, TEM, and EDS, respectively. The UV-Vis spectrum of N-doped TiO2 showed that the absorption band was shifted to 439 nm and the band gap was reduced to 2.82 eV. The structure analysis of XRD spectra showed that the peak positions and the crystal structure were changed by plasma-treating at 14.1 W for 40 min. In the batch photocatalytic system, ninety percent of azo dyes were degraded under visible light irradiation for 10 hours in the optimum condition of TiOxNy-1:6. Furthermore, a screening effect of excess particles was observed when the dosage of TiOxNy-1:6 was over 0.2 g/L, and an optimum dosage of TiOxNy-1:6 at 0.15 g/L was determined.

Additionally, the optimal conditions for preparation of the photocatalyst as TiOxNy-1:6 was chosen to perform the photocatalytic activity and durability test in a continuous-flow photocatalysis/membrane separation system (PMSS). The experimental results showed that the optimal dosage of TiOxNy was 0.5 g/L, and the AO7 degradation efficiency was effectively improved by increasing oxygen concentration from 0% to 40% or decreasing the initial AO7 concentration from 15 to 5 mg/L. The degradation efficiency of AO7 increases as pH decreases, exhibiting a maximum efficiency at pH 2. For membrane separation/recover system, the recovery efficiency reached 99.5% after the ultrafiltration had been carried out for 90 min, and the result indicated that the photocatalyst was able to be separated/recovered completely. For this reason, the photocatalyst was recovered completely. The durability of the photocatalyst was evaluated by reusing the photocatalyst 11 times and the recycled catalyst was capable of repeating 5 runs without significant decrease in treatment efficiency. In addition, the durability of TiOxNy catalysts with aeration, which decreases catalyst deactivation, was longer than that without aeration.

摘 要 i
ABSTRACT iii
CONTENTS v
ACKNOWLEDGEMENTS viii
LIST OF TABLES ix
LIST OF FIGURES xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research Objectives 3
Chapter 2 Literature Review 5
2.1 Introduction to dye 5
2.1.1 Azo dye 7
2.1.2 Azo dye, environment concern 7
2.2 Introduction to photocatalyst 9
2.2.1 Basic principles of photocatalysis 9
2.2.2 Mechanism of photocatalysis 10
2.2.3 TiO2 crystal structure 11
2.2.4 TiO2 light activation 13
2.2.5 Photosensitized electron transfer reactions on the TiO2 surface 15
2.2.6 Application of TiO2 17
2.2.7 Preparation methods and doping moieties 19
2.2.8 Factors influencing the photocatalytic degradation 22
2.2.9 N-doped TiO2: An overview 26
2.3 Introduction to non-thermal plasma 30
2.3.1 Definition of non-thermal plasma 30
2.3.2 Discharging mode in water 32
2.4 Introduction to membrane 36
2.4.1 Definition of membrane 36
2.4.2 Membrane classification 37
2.4.3 Mechanisms of membrane separation 38
2.4.4 Membrane material 41
2.4.5 Ceramic membrane 45
Chapter 3 Materials and Methods 48
3.1 Materials 48
3.1.1 Chemical reagents 48
3.1.2 Experimental Instruments and Equipments 48
3.2. Establishment of LPNTP System and photoreactor 49
3.2.1 LPNTP System 49
3.3.2 Batch photochemical reactor 51
3.2.3 Continuous-flow photocatalytic reactor 51
3.2.4 Ceramic membrane separation/recover system 54
3.3 Preparation of N-doped TiO2 55
3.4 Experimental procedures 57
3.4.1 Background experiments 57
3.4.2 Photocatalytic process in a batch system 59
3.4.3 Photocatalytic process in a continuous-flow system 60
Chapter 4 Results and Discussion 61
4.1 LPNTP discharge form and comparison in discharge distance 61
4.2 Characterization of N-doped TiO2 64
4.2.1 Appearance of the TiOxNy and UV-Vis Analysis 64
4.2.2 XPS Analysis 69
4.2.3 XRD Analysis 73
4.2.4 BET Analysis 77
4.2.5 SEM Analysis 80
4.2.6 TEM and EDS Analysis 84
4.3 Decolorization of AO7 in batch photoreactor 89
4.3.1 Background experiments results 89
4.3.2 Dark adsorption of TiOxNy at different initial AO7 concentration 91
4.3.3 Effect of different TiO2:NH4Cl ratios 94
4.3.4 Effect of oxygen concentrations 96
4.3.5 Effect of TiOxNy dosage 99
4.3.6 Effect of Air flowrate 101
4.3.7 Summary of section 4.3 103
4.4 Decolorization of AO7 in continuous-flow photoreactor 107
4.4.1 Effect of initial AO7 concentration 107
4.4.2 Effect of TiOxNy dosage 110
4.4.3 Effect of Solution pH 112
4.4.4 Effect of oxygen concentration 114
4.4.5 Summary of section 4.4 118
4.5 Photocatalytic separation/recovering from treated suspensions 123
4.5.1 Effect of TiOxNy in the feed on PMSS process performance 123
4.5.2 Recovery of catalyst and effect of the filtration time 125
4.5.3 Recovering of TiOxNy for durability of assessment 126
Chapter 5 Conclusions and Recommendations 128
5.1 Conclusions 128
5.2 Recommendations 130
References 131
Profile of Author 156

1.C.C. Liu, Y.H. Hsieh, P.F. Lai, C.H. Li and C.L. Kao, “Photodegradation treatment of azo dye wastewater by UV/TiO2 process,” Dyes and Pigments, 2006. 68(2-3): p. 191-195.
2.X. Lu, B. Yang, J. Chen and R. Sun, “Treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process,” Journal of Hazardous Materials, 2009. 161(1): p. 241-245.
3.S.F.Villanueva and S.S. Martez, “TiO2-assisted degradation of acid orange 7 textile dye under solar light,” Solar Energy Materials and Solar Cells, 2007. 91(15-16): p. 1492-1495.
4.M. Janus, E. Kusiak, J. Choina, J. Ziebro and A.W. Morawski, “Enhanced adsorption of two azo dyes produced by carbon modification of TiO2,” Desalination, 2009. 249(1): p. 359-363.
5.A. Gottlieb, C. Shaw, C. Smith, A. Wheatley and S. Forsythe, “The toxicity of textile reactive azo dyes after hydrolysis and decolourisation,” Journal of Biotechnology, 2003. 101(1): p. 49-56.
6.M. Ozacar and A. Sengil, “Adsorption of reactive dyes on calcined alunite from aqueous solutions,” Journal of Hazardous Materials, 2003. 98(1-3): p. 211-224.
7.O. Diwald, T.L. Thompson, T. Zubkov, E.G. Goralski, S.D. Walck and J.T. Yates Jr, “Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light,” Journal of Physical Chemistry B, 2004. 108(19): p. 6004-6008.
8.I.K. Konstantinou, and T.A. Albanis, “TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review,”Applied Catalysis B: Environmental, 2004. 49(1): p. 1-14.
9.M. Anpo and M. Takeuchi, “The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation,” Journal of Catalysis, 2003. 216(1-2): p. 505-516.
10.P. Calza and E. Pelizzetti, “Photocatalytic transformation of organic compounds in the presence of inorganic ions,” Pure and Applied Chemistry, 2001. 73(12): p. 1839-1848.
11.Y. Wang, C. Feng, Z. Jin, J. Zhang, J. Yang and S. Zhang, “A novel N-doped TiO2 with high visible light photocatalytic activity,” Journal of Molecular Catalysis A: Chemical, 2006. 260(1-2): p. 1-3.
12.I.C. Kang, Q. Zhang, S. Yin, T. Sato, and F. Saito, “Novel method for preparation of high visible active N-doped TiO2 photocatalyst with its grinding in solvent,” Applied Catalysis B: Environmental, 2008. 84(3-4): p. 570-576.
13.C.C. Chen, H.L. Bai, S.M Chang, C.L. Chang and W. Den, “Preparation of N-doped TiO2 photocatalyst by atmospheric pressure plasma process for VOCs decomposition under UV and visible light sources,” Journal of Nanoparticle Research, 2007. 9(3): p. 365-375.
14.S. Sato, “Photocatalytic activity of NOx-doped TiO2 in the visible light region,” Chemical Physics Letters, 1986. 123(1-2): p. 126-128.
15.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, 2001. 293(5528): p. 269-271.
16.A. Kasahara, K. Nukumizu and K. Domen, “LaTiO2N as a visible-light (≤600 nm)-driven photocatalyst (2),” Journal of Physical Chemistry B, 2003. 107(3): p. 791-797.
17.J.L. Gole, J.D. Stout, C. Burda, Y. Lou and X. Chen, “Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale,” Journal of Physical Chemistry B, 2004. 108(4): p. 1230-1240.
18.S. Senthilkumaar, K. Porkodi, R. Gomathi, A. Geetha Maheswari and N. Manonmani, “Sol-gel derived silver doped nanocrystalline titania catalysed photodegradation of methylene blue from aqueous solution,” Dyes and Pigments, 2006. 69(1-2): p. 22-30.
19.S. Yoshiaki, A. Hiroyuki, O. Kensen, K. Hironobu, N. Jun, T. Tsuyoshi, K. Junko, H. Michikazu and D. Kazunari, “Metal ion and N co-doped TiO2 as a visible-light photocatalyst,” Journal of Materials Research, 2004. 19(7): p. 2100-2108.
20.D. Li, H. Haneda, S. Hishita, N. Ohashi and N. K. Labhsetwar, “Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde,” Journal of Fluorine Chemistry, 2005. 126(1): p. 69-77.
21.S. Giraud, G. Loupias, H. Maskrot, N. Herlin-Boime, S. Valange, E. Guelou, J. Barrault and Z. Gabelica, “Dip-coating on TiO2 foams using a suspension of Pt-TiO2 nanopowder synthesized by laser pyrolysis--preliminary evaluation of the catalytic performances of the resulting composites in deVOC reactions,” Journal of the European Ceramic Society, 2007. 27(2-3): p. 931-936.
22.P. Lukes, M. Clupek, V. Babicky, P. Sunka, G. Winterova and V. Janda, “ Non-thermal plasma induced decomposition of 2-chlorophenol in water,” Acta Physica Slovaca, 2003. 53(6): p. 423-428.
23.M. Moreau, N. Orange and M.G.J. Feuilloley, “Non-thermal plasma technologies: New tools for bio-decontamination,” Biotechnology Advances, 2008. 26(6): p. 610-617.
24.Y.I. Lee, J.H. Lee, S.H. Hong and D.Y. Kim, “Preparation of nanostructured TiO2 ceramics by spark plasma sintering,” Materials Research Bulletin, 2003. 38(6): p. 925-930.
25.Y.S. Chen, X.S. Zhang, Y.C. Dai and W.K. Yuan, “Pulsed high-voltage discharge plasma for degradation of phenol in aqueous solution,” Separation and Purification Technology, 2004. 34(1-3): p. 5-12.
26.D. Wang, Z. Tian, L. Shen, Z. Liu and Y. Huang, “Preparation and characterization of nanostructured Al2O3-13wt.%TiO2 ceramic coatings by plasma spraying,” Rare Metals, 2009. 28(5): p. 465-470.
27.K. Navaneetha Pandiyaraj, V. Selvarajan, M. Pavese, P. Falaras and D. Tsoukleris, “Investigation on surface properties of TiO2 films modified by DC glow discharge plasma,” Current Applied Physics, 2009. 9(5): p. 1032-1037.
28.M. Maeda and T. Watanabe, “Visible light photocatalysis of nitrogen-doped titanium oxide films prepared by plasma-enhanced chemical vapor deposition,” Journal of the Electrochemical Society, 2006. 153(3): p. C186-C189.
29.Y.L. Li and T. Ishigaki, “Synthesis and structural characterization of titanium oxides and composites by thermal plasma oxidation of titanium carbide,” Thin Solid Films, 2002. 407(1-2): p. 79-85.
30.Y.C. Hong, C.U. Bang, D.H. Shin and H.S. Uhm, “Band gap narrowing of TiO2 by nitrogen doping in atmospheric microwave plasma,” Chemical Physics Letters, 2005. 413(4-6): p. 454-457.
31.P. Cui, X. Zhao, M. Zhou and L. Wang, “Photocatalysis-Membrane Separation Coupling Reactor and Its Application,” Chinese Journal of Catalysis, 2006. 27(9): p. 752-754.
32.Y. Zhao, J. Zhong, H. Li, N. Xu and J. Shi, “Fouling and regeneration of ceramic microfiltration membranes in processing acid wastewater containing fine TiO2 particles,” Journal of Membrane Science, 2002. 208(1-2): p. 331-341.
33.P. Cooper, “Overview of the effect of environmental legislation on the UK textile wet processing industry,” Journal of the Society of Dyers and Colourists, 1992. 108(4): p. 176-182.
34.J.C. Quick and W.A. Kneller, “The use of dyes as an aid to coal petrography,” International Journal of Coal Geology, 1987. 7(1): p. 51-68.
35.F.v.d. Zee, “Anaerobic azo dye reduction,” Ph.D. Thesis, Wageningen Universiteit, Nederlands, 2002.
36.D.W. Rangnekar and P.P. Singh, “An introduction to synthetic dyes,” Bombay: Himalaya., 1980.
37.K. Hunger, “Industrial dyes: Chemistry, properties, applications,” Germany: Wiley-VCH., 2003.
38.V.A. Shenai, “Technology of textile processing volume II: Chemistry of dyes and principles of dyeing,” Bombay: Sevak., 1977.
39.S. Sen and G.N. Demirer, “Anaerobic treatment of synthetic textile wastewater containing a reactive azo dye,” Journal of Environmental Engineering, 2003. 129(7): p. 595-601.
40.B. Donlon, E. Razo-Flores, M. Luijten, H. Swarts, G. Lettinga and J.A Field, “Detoxification and partial mineralization of the azo dye mordant orange 1 in a continuous upflow anaerobic sludge-blanket reactor,” Applied Microbiology and Biotechnology, 1997. 47(1): p. 83-90.
41.R.L.M. Allen, Color Chemistry: Studies in Modern Chemistry ed. 1971: Thomas Nelson and Sons Ltd.
42.A. R. Rahmani, M. Zarrabi, M. R. Samarghandi, A. Afkhami and H. R. Ghaffari, “Degradation of azo dye reactive black 5 and acid orange 7 by Fenton-like mechanism,” Iranian Journal of Chemical Engineering, 2010. 7(1): p. 84-94.
43.IPPC, Reference document on best available techniques for the textiles industry. 2003.
44.T. Robinson, G. McMullan, R. Marchant and P. Nigam, “Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative,” Bioresource Technology, 2001. 77(3): p. 247-255.
45.B.V. Babu, H.T. Rana, V. Ramakrishna and M. Sharma, “COD Reduction of Reactive Dyeing Effluent from Cotton Textile Industry,” India: Birla Institute of Technology and Science, 2000: p. 1-10.
46.A. Garg, K.L. Bhat and C.W. Bock, “Mutagenicity of aminoazobenzene dyes and related structures: A QSAR/QPAR investigation,” Dyes and Pigments, 2002. 55(1): p. 35-52.
47.M. Bhaskar, A. Gnanamani, R.J. Ganeshjeevan, R. Chandrasekar, S. Sadulla and G. Radhakrishnan, “Analyses of carcinogenic aromatic amines released from harmful azo colorants by Streptomyces SP. SS07,” Journal of Chromatography A, 2003. 1018(1): p. 117-123.
48.G.J. Kapadia, H. Tokuda, R. Sridhar, V. Balasubramanian, J. Takayasu, P. Bu, F. Enjo, M. Takasaki, T. Konoshima and H. Nishino, “Cancer chemopreventive activity of synthetic colorants used in foods, pharmaceuticals and cosmetic preparations,” Cancer Letters, 1998. 129(1): p. 87-95.
49.V. Retnasamy, “Photocatalytical removal of lead ions from aqueous solution with immobilized TiO2 powder on carbon based plate in the presence of calcium oxalate and thiolactic acid,” Masters Thesis, Universiti Sains Malaysia 2005.
50.A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, 1972. 238(5358): p. 37-38.
51.J.C. Colmenares, R. Luque, J. M. Campelo, F. Colmenares, Z. Karpinski and A. A. Romero, “Nanostructured Photocatalysts and Their Applications in the Photocatalytic Transformation of Lignocellulosic Biomass: An Overview,” Materials, 2009. 2(4): p. 2228-2258.
52.O. Carp, C.L. Huisman and A. Reller, “Photoinduced reactivity of titanium dioxide,” Progress in Solid State Chemistry, 2004. 32(1-2): p. 33-177.
53.J.M. Herrmann, “Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants,” Catalysis Today, 1999. 53(1): p. 115-129.
54.N.T. Dung, N. Van Khoa, and J.M. Herrmann, “Photocatalytic degradation of reactive dye RED-3BA in aqueous TiO2 suspension under UV-visible light,” International Journal of Photoenergy, 2005. 7(1): p. 11-15.
55.J. Zhao and X. Yang, “Photocatalytic oxidation for indoor air purification: A literature review,” Building and Environment, 2003. 38(5): p. 645-654.
56.T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki, K. Suzuki and Y. Taga, “Visible-light Photocatalyst - Nitrogen-doped Titanium Dioxide,” R&D Review of Toyota CRDL, 2005. 40: p. 45-50.
57.S. D. Yoon, V.G. Harris, C. Vittoria and A. Widom, “Electronic transport in oxygen deficient ferromagnetic semiconducting TiO2-δ,” Journal of Physics Condensed Matter, 2007. 19(32).
58.Z. Yanqing, S. Erwei, C. Suxian, L. Wenjun and H. Xingfang, “Hydrothermal preparation and characterization of brookite-type TiO2 nanocrystallites,” Journal of Materials Science Letters, 2000. 19(16): p. 1445-1448.
59.P. S. Ha, H-J Youn, H. S. Jung, K. S. Hong, Y. H. Park and K. H. Ko, “Anatase-rutile transition of precipitated titanium oxide with alcohol rinsing,” Journal of Colloid and Interface Science, 2000. 223(1): p. 16-20.
60.U.d.Q. Física, “Development of soft chemical processes: preparations of TiO2 films and powders at low temperature,” Ph.D. Thesis, Universitat Autònoma de Barcelona,Spain. , 2008.
61.K.Y. Jung and S.B. Park, “Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene,” Journal of Photochemistry and Photobiology A: Chemistry, 1999. 127(1-3): p. 117-122.
62.A.L. Linsebigler, G. Lu and J.T. Yates Jr, “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results,” Chemical Reviews, 1995. 95(3): p. 735-758.
63.U. Diebold, “The surface science of titanium dioxide,” Surface Science Reports, 2003. 48(5-8): p. 53-229.
64.E.M. Levin and H.F. McMurdie, “Phase diagrams for ceramists, 1975 Supplement,” American Ceramic Society, 1975: p. 513.
65.H. Shon, S. Phuntsho, Y. Okour, D.L. Cho, K.S. Kim, H.J. Li, S. Na, J.B. Kim and J.H. Kim, “Visible Light Responsive Titanium Dioxide (TiO2),” Journal of the Korean Industrial and Engineering Chemistry, 2008. 19(1): p. 1-16.
66.H. Kim and W. Choi, “Effects of surface fluorination of TiO2 on photocatalytic oxidation of gaseous acetaldehyde,” Applied Catalysis B: Environmental, 2007. 69(3-4): p. 127-132.
67.A. Mills, and S. Le Hunte, “An overview of semiconductor photocatalysis,” Journal of Photochemistry and Photobiology A: Chemistry, 1997. 108(1): p. 1-35.
68.H. H. Cheng, S.S. Chen, Y. W. Cheng, W.L. Tseng and Y.H. Wang, “Liquid-phase non-thermal plasma-prepared N-doped TiO2 for azo dye degradation with the catalyst separation system by ceramic membranes,” Water Science and Technology, 2010. 62(5): p. 1060-1066.
69.M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A.Yasuda and G. Nelles, “Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers,” Nat Mater, 2005. 4(8): p. 607-611.
70.M. Durr, A. Bamedi, A.Yasuda and G. Nelles, “Tandem dye-sensitized solar cell for improved power conversion efficiencies,” Applied Physics Letters, 2004. 84(17): p. 3397-3399.
71.M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renewable and Sustainable Energy Reviews, 2007. 11(3): p. 401-425.
72.S. Segota, L. Curkovic, D. Ljubas, V. Svetlicic, I. F. Houra and N. Tomasic, “Synthesis, characterization and photocatalytic properties of sol-gel TiO2 films,” Ceramics International, 2010. In Press, Corrected Proof.
73.A. Fujishima, T.N. Rao and D.A. Tryk, “Titanium dioxide photocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000. 1(1): p. 1-21.
74.V. Zorba, X. Chen and S.S. Mao, “Superhydrophilic TiO2 surface without photocatalytic activation,” Applied Physics Letters, 2010. 96(9).
75.S. Lu, “Nanoporous and nanostructured materials for catalysis, sensor, and gas separation applications,” Journal of Nanomaterials, 2006. p. 485-484.
76.K.A. Michałow, “Flame spray synthesis and characterisation of doped TiO2 nanoparticles for photoelectric and photocatalytic applications,” Ph.D. Thesis, University of Warsaw, Poland 2009.
77.D. Chen and A. K. Ray, “Removal of toxic metal ions from wastewater by semiconductor photocatalysis,” Chemical Engineering Science, 2001. 56(4): p. 1561-1570.
78.V.P. Vinod and T.S. Anirudhan, “Photocatalytic degradation for environmental applications - A review,” Journal of Chemical Technology and Biotechnology, 2002. 77(1): p. 102-116.
79.M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, 1995. 95(1): p. 69-96.
80.J. Grzechulska, M. Hamerski and A.W. Morawski, “Photocatalytic decomposition of oil in water,” Water Research, 2000. 34(5): p. 1638-1644.
81.D.F. Ollis, E. Pelizzetti and N. Serpone, “Photocatalyzed destruction of water contaminants,” Environmental Science and Technology, 1991. 25(9): p. 1522-1529.
82.A. Mills, A.A. Belghazi and D. Rodman, “Bromate removal from drinking water by semiconductor photocatalysis,” Water Research, 1996. 30(9): p. 1973-1978.
83.D.M. Blake, “Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air,” National Renewable Energy Laboratory, p 1-158, 2001.
84.G.S. Shephard, S. Stockenstrom, D. de Villiers, W.J. Engelbrecht and G.F.S. Wessels, “Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst,” Water Research, 2002. 36(1): p. 140-146.
85.S. Liu, M. Lim, R. Fabris C. Chow K. Chiang M. Drikas and R. Amal, “Removal of humic acid using TiO2 photocatalytic process - Fractionation and molecular weight characterisation studies,” Chemosphere, 2008. 72(2): p. 263-271.
86.M. Bekbolet and G. Ozkosemen, “A preliminary investigation on the photocatalytic degradation of a model humic acid,” Water Science and Technology, 1996. 33(6): p. 189-194.
87.M. Bekbolet, Z. Boyacioglu and B. Ozkaraova, “The influence of solution matrix on the photocatalytic removal of color from natural waters,” Water Science and Technology, 1998. 38(6): p. 155-162.
88.B.R. Eggins, F.L. Palmer and J.A. Byrne, “Photocatalytic treatment of humic substances in drinking water,” Water Research, 1997. 31(5): p. 1223-1226.
89.R. Al-Rasheed and D.J. Cardin, “Photocatalytic degradation of humic acid in saline waters. Part 1. Artificial seawater: influence of TiO2, temperature, pH, and air-flow,” Chemosphere, 2003. 51(9): p. 925-933.
90.R. Al-Rasheed and D.J. Cardin, “Photocatalytic degradation of humic acid in saline waters: Part 2. Effects of various photocatalytic materials,” Applied Catalysis A: General, 2003. 246(1): p. 39-48.
91.C. Minero, V. Maurino and E. Pelizzetti, “Photocatalytic transformations of hydrocarbons at the sea water/air interface under solar radiation,” Marine Chemistry, 1997. 58(3-4): p. 361-372.
92.R.L. Ziolli and W.F. Jardim, “Photocatalytic decomposition of seawater-soluble crude-oil fractions using high surface area colloid nanoparticles of TiO2,” Journal of Photochemistry and Photobiology A: Chemistry, 2002. 147(3): p. 205-212.
93.A. Zaleska, “Doped-TiO2: A review,” Recent Patents on Engineering, 2008. 2(3): p. 157-164.
94.M.S. Lee, S.S. Hong and M. Mohseni, “Synthesis of photocatalytic nanosized TiO2-Ag particles with sol-gel method using reduction agent,” Journal of Molecular Catalysis A: Chemical, 2005. 242(1-2): p. 135-140.
95.J. O. Carneiro, V. Teixeira, A. Portinha, L. Dupak, A. Magalhaes and P. Coutinho, “Study of the deposition parameters and Fe-dopant effect in the photocatalytic activity of TiO2 films prepared by dc reactive magnetron sputtering,” Vacuum, 2005. 78(1): p. 37-46.
96.J.C.S. Wu, and C.H. Chen, “A visible-light response vanadium-doped titania nanocatalyst by sol-gel method,” Journal of Photochemistry and Photobiology A: Chemistry, 2004. 163(3): p. 509-515.
97.X.Z. Li and F.B. Li, “Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment,” Environmental Science and Technology, 2001. 35(11): p. 2381-2387.
98.F.B. Li, and X.Z. Li, “The enhancement of photodegradation efficiency using Pt-TiO2 catalyst,” Chemosphere, 2002. 48(10): p. 1103-1111.
99.Z.B. Wu, F. Dong, W.R. Zhao, and S. Guo, “Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride,” Journal of Hazardous Materials, 2008. 157(1): p. 57-63.
100.K. Takeshita, A. Yamakata, T. Ishibashi, H. Onishi, K. Nishijima and T. Ohno, “Transient IR absorption study of charge carriers photogenerated in sulfur-doped TiO2,” Journal of Photochemistry and Photobiology A: Chemistry, 2006. 177(2-3): p. 269-275.
101.J. Yu, M. Zhou, B. Cheng and X. Zhao, “Preparation, characterization and photocatalytic activity of in situ N,S-codoped TiO2 powders,” Journal of Molecular Catalysis A: Chemical, 2006. 246(1-2): p. 176-184.
102.A. Zaleska, J.W. Sobczak, E. Grabowska and J. Hupka, “Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light,” Applied Catalysis B: Environmental, 2008. 78(1-2): p. 92-100.
103.L. Korosia and I. Dekany, “Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006. 280(1-3): p. 146-154.
104.M. Anpo, “Use of visible light Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method,” Pure and Applied Chemistry, 2000. 72(9): p. 1787-1792.
105.H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue and M. Anpo, “Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts,” Journal of Photochemistry and Photobiology A: Chemistry, 2002. 148(1-3): p. 257-261.
106.J. Zhu, W. Zheng, B. Hea, J. Zhang and M. Anpob, “Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water,” Journal of Molecular Catalysis A: Chemical, 2004. 216(1): p. 35-43.
107.S. Sakthivel and H. Kisch, “Daylight Photocatalysis by Carbon-Modified Titanium Dioxide,” Angewandte Chemie - International Edition, 2003. 42(40): p. 4908-4911.
108.T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, “Band gap narrowing of titanium dioxide by sulfur doping,” Applied Physics Letters, 2002. 81(3): p. 454.
109.T. Ohno, T. Mitsui and M. Matsumura, “Photocatalytic activity of S-doped TiO2 photocatalyst under visible light,” Chemistry Letters, 2003. 32(4): p. 364-365.
110.S.C. Moon, H. Mametsuka, S. Tabata and E. Suzuki, “Photocatalytic production of hydrogen from water using TiO2 and B/TiO2,” Catalysis Today, 2000. 58(2-3): p. 125-132.
111.J.C. Yu, L. Zhang, Z. Zheng and J. Zhao, “Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity,” Chemistry of Materials, 2003. 15(11): p. 2280-2286.
112.J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang and L.Z. Zhang, “Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders,” Chemistry of Materials, 2002. 14(9): p. 3808-3816.
113.X. Hong, Z. Wang, W. Cai, F. Lu, J. Zhang, Y. Yang, N. Ma and Y. Liu, “Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide,” Chemistry of Materials, 2005. 17(6): p. 1548-1552.
114.H. Irie, Y. Watanabe and K. Hashimoto, “Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst,” Chemistry Letters, 2003. 32(8): p. 772-773.
115.M. Saquib and M. Muneer, “TiO2/mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions,” Dyes and Pigments, 2003. 56(1): p. 37-49.
116.S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, “Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2,” Solar Energy Materials and Solar Cells, 2003. 77(1): p. 65-82.
117.B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo and V. Murugesan, “ Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4,” Chemosphere, 2002. 46(8): p. 1173-1181.
118.C.M. So, M.Y. Cheng, J.C. Yu and P.K. Wong, “Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation,” Chemosphere, 2002. 46(6): p. 905-912.
119.J. Grzechulska and A.W. Morawski, “Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide,” Applied Catalysis B: Environmental, 2002. 36(1): p. 45-51.
120.R.J. Davis, L. John, Gainer, G. ONeal and I.W. Wu, “ Photocatalytic decolorization of wastewater dyes,” Water Environment Research, 1994. 66(1): p. 50-53.
121.B. Zielinska, J. Grzechulska, B.Grzmil and A.W. Morawski, “Photocatalytic degradation of Reactive Black 5: A comparison between TiO2-Tytanpol A11 and TiO2-Degussa P25 photocatalysts,” Applied Catalysis B: Environmental, 2001. 35(1): p. L1-L7.
122.M.A. Fox and M.T. Dulay, “Heterogeneous photocatalysis,” Chemical Reviews, 1993. 93(1): p. 341-357.
123.D.W. Bahnemann, J. Cunningham, M.A. Fox, E. Pelizzetti, P. Pichat and N. Serpone, R.G. Zepp, G.R. Helz and D.G. Crosby, “Aquatic Surface Photochemistry,” Lewis. Publishers, Boca Raton, 1994: p. 261.
124.I. Poulios and I. Tsachpinis, “Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides,” Journal of Chemical Technology and Biotechnology, 1999. 74(4): p. 349-357.
125.S. Tunesi and M. Anderson, “Influence of chemisorption on the photodecomposition of salicylic acid and related compounds using suspended TiO2 ceramic membranes,” Journal of Physical Chemistry, 1991. 95(8): p. 3399-3405.
126.W.Z. Tang and C.P. Huang, “Photocatalyzed oxidation pathways of 2,4- dichlorophenol by CdS in basic and acidic aqueous solutions,” Water Research, 1995. 29(2): p. 745-756.
127.S. Zheng, Q. Huang, J. Zhou and B. Wang, “A study on dye photoremoval in TiO2 suspension solution,” Journal of Photochemistry and Photobiology A: Chemistry, 1997. 108(2-3): p. 235-238.
128.C. Galindo, P. Jacques and A. Kalt, “Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations,” Journal of Photochemistry and Photobiology A: Chemistry, 2000. 130(1): p. 35-47.
129.W.Z. Tang and A. Huren, “UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions,” Chemosphere, 1995. 31(9): p. 4157-4170.
130.K. Hustert and R.G. Zepp, “Photocatalytic degradation of selected azo dyes,” Chemosphere, 1992. 24(3): p. 335-342.
131.C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui and J.M. Herrmanna, “Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2,” Journal of Photochemistry and Photobiology A: Chemistry, 2003. 158(1): p. 27-36.
132.A. Mills, R.H. Davies and D. Worsley, “Water purification by semiconductor photocatalysis,” Chemical Society Reviews, 1993. 22(6): p. 417-425.
133.J. Bandara, J.A. Mielczarski and J. Kiwi, “Photosensitized degradation of azo dyes on Fe, Ti, and Al oxides. Mechanism of charge transfer during the degradation,” Langmuir, 1999. 15(22): p. 7680-7687.
134.B. Neppolian, S. Sakthivel, B. Arabindoo, M. Palanichamy and V. Murugesan, “Photocatalytic degradation of textile dye commonly used in cotton fabrics,” Studies in Surface Science and Catalysis. 1998, p. 329-335.
135.H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard and J.M. Herrmann, “Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania,” Applied Catalysis B: Environmental, 2002. 39(1): p. 75-90.
136.M. Stylidi, D.I. Kondarides and X.E. Verykios, “Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions,” Applied Catalysis B: Environmental, 2003. 40(4): p. 271-286.
137.K. Tanaka, K. Padermpole and T. Hisanaga, “Photocatalytic degradation of commercial azo dyes,” Water Research, 2000. 34(1): p. 327-333.
138.N. Daneshvar, D. Salari and A.R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters,” Journal of Photochemistry and Photobiology A: Chemistry, 2003. 157(1): p. 111-116.
139.T. Sauer, G.C. Neto, H.J Jose and R.F.P.M Moreira, “Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor,” Journal of Photochemistry and Photobiology A: Chemistry, 2002. 149(1-3): p. 147-154.
140.A.P. Davis and C.P. Huang, “The removal of substituted phenols by a photocatalytic oxidation process with cadmium sulfide,” Water Research, 1990. 24(5): p. 543-550.
141.C. Walling, “Fenton''s reagent revisited,” Accounts of Chemical Research, 1975. 8(4): p. 125-131.
142.S.Vijayaraghavan, “Effect of pH, UV Intensity, and Dissolved Oxygen Content on the Photocatalytic Destruction of Toluene in Water,” M.S. Thesis, University of Florida, USA, 2000.
143.S. Sakthivel, M. Janczarek and H. Kisch, “Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2,” Journal of Physical Chemistry B, 2004. 108(50): p. 19384-19387.
144.L. Miao, S. Tanemura, H. Watanabe, Y. Mori, K. Kaneko and S. Toh, “The improvement of optical reactivity for TiO2 thin films by N2-H2 plasma surface-treatment,” Journal of Crystal Growth, 2004. 260(1-2): p. 118-124.
145.Y. Suda, H. Kawasaki, T. Ueda, and T. Ohshima, “Preparation of nitrogen-doped titanium oxide thin film using a PLD method as parameters of target material and nitrogen concentration ratio in nitrogen/oxygen gas mixture,” Thin Solid Films, 2005. 475(1-2): p. 337-341.
146.M.C. Yang, T.S. Yang and M.S. Wong, “Nitrogen-doped titanium oxide films as visible light photocatalyst by vapor deposition,” Thin Solid Films, 2004. 469-470: p. 1-5.
147.X. Chen, Y.B. Lou, A.C.S. Samia, C. Burda and J.L. Gole, “Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder,” Advanced Functional Materials, 2005. 15(1): p. 41-49.
148.Y. Nosaka, M. Matsushita, J. Nishino and A.Y. Nosaka, “Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds,” Science and Technology of Advanced Materials, 2005. 6(2): p. 143-148.
149.S. Sato, R. Nakamura and S. Abe, “Visible-light sensitization of TiO2 photocatalysts by wet-method N doping,” Applied Catalysis A: General, 2005. 284(1-2): p. 131-137.
150.S. Yin, Y. Aita, M. Komatsu, J.S. Wang and Q. Tang and T. Sato, “Synthesis of excellent visible-light responsive TiO2-xNy photocatalyst by a homogeneous precipitation- solvothermal process,” Journal of Materials Chemistry, 2005. 15(6): p. 674-682.
151.S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C. Di Valentin and G. Pacchioni, “Origin of photoactivity of nitrogen-doped titanium dioxide under visible light,” Journal of the American Chemical Society, 2006. 128(49): p. 15666-15671.
152.C.C. Chen, “Production of N-doped TiO2 photocatalysts by atmospheric pressure plasma enhanced nanoparticle synthesis process,” Ph.D Thesis, National Chiao Tung University, Taiwan. 2007.
153.S. Mozia, M. Tomaszewska, B. Kosowska, B. Grzmil, A.W. Morawski and K. Kałucki, “Decomposition of nonionic surfactant on a nitrogen-doped photocatalyst under visible-light irradiation,” Applied Catalysis B: Environmental, 2005. 55(3): p. 195-200.
154.O. Diwald, T.L. Thompson, E.G. Goralski, S.D. Walck and J.T. Yates, “The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals,” Journal of Physical Chemistry B, 2004. 108(1): p. 52-57.
155.P.G. Wu, C.H. Ma and J.K. Shang, “Effects of nitrogen doping on optical properties of TiO2 thin films,” Applied Physics A: Materials Science and Processing, 2005. 81(7): p. 1411-1417.
156.S.K. Joung, T. Amemiy, M. Murabayashi and K. Itoh, “Relation between photocatalytic activity and preparation conditions for nitrogen-doped visible light-driven TiO2 photocatalysts,” Applied Catalysis A: General, 2006. 312: p. 20-26.
157.C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi and E. Giamello, “Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations,” Journal of Physical Chemistry B, 2005. 109(23): p. 11414-11419.
158.M. Sathish, B. Viswanathan, R. Viswanath, P. Gopinath and S. Chinnakonda, “Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst,” Chemistry of Materials, 2005. 17(25): p. 6349-6353.
159.C. Di Valentin, G. Pacchioni and A. Selloni, “Origin of the different photoactivity of N-doped anatase and rutile TiO2,” Physical Review B - Condensed Matter and Materials Physics, 2004. 70(8): p. 085116-1-085116-4.
160.K. Yang, Y. Dai, B. Huang and S. Han, “Theoretical study of N-doped TiO2 rutile crystals,” Journal of Physical Chemistry B, 2006. 110(47): p. 24011-24014.
161.H. H. Kim, “Trends in catalysis research, Ch-1 in: Application of plasma -catalyst hybrid processes for the control of NOx and volatile organic compounds,” Nova Science Publishers edition. 2006: p. 1-51.
162.S. Maurizi and S. Anne, “Plasma processing of materials: scientific opportunities and technological challenges,” Commission on Physical Sciences, Mathematics, and Applications (CPSMA), 1991.
163.J.M.E. Harper, “Ion beam deposition,” Ch.II-5 in Thin Film Processes J.L. Vossen, W. Kern (Ed.), New York: Academic Press, Inc., , 1978: p. 175–206.
164.P.I. John, “Plasma sciences and the creation of wealth,” New Cloth Market, 1999. 13(6): p. 25-27.
165.E.E. Kunhardt, “Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas,” IEEE Transactions on Plasma Science, 2000. 28(1): p. 189-200.
166.S.K. Sengupta and O.P. Singh, “Contact glow discharge electrolysis: a study of its chemical yields in aqueous inert-type electrolytes,” Journal of Electroanalytical Chemistry, 1994. 369(1-2): p. 113-120.
167.Y. Liu, “Aqueous p-chloronitrobenzene decomposition induced by contact glow discharge electrolysis,” Journal of Hazardous Materials, 2009. 166(2-3): p. 1495-1499.
168.J. Gong and W. Cai, “Degradation of methyl orange in water by contact glow discharge electrolysis,” Plasma Science and Technology, 2007. 9(2): p. 190-193.
169.J. Gao, X. Wang, Z. Hu, H. Deng, J. Hou, X. Lu and J. Kang, “Plasma degradation of dyes in water with contact glow discharge electrolysis,” Water Research, 2003. 37(2): p. 267-272.
170.J. Gao, “A novel technique for wastewater treatment by contact glow-discharge electrolysis,” Pakistan Journal of Biological Sciences, 2006. 9(2): p. 323-329.
171.K.G. Kostov, R. Y. Honda, L.M.S. Alves and M.E. Kayama, “Characteristics of dielectric barrier discharge reactor for material treatment,” Brazilian Journal of Physics, 2009. 39(2): p. 322-325.
172.U. Kogelschatz, B. Eliasson and W. Egli, “Dielectric-barrier discharges. Principle and applications,” Journal De Physique. IV : JP, 1997. 7(4): p. 47-66.
173.W. Siemens, “Ueber die elektrostatische Induction und die Verzogerung des Stroms in Flaschendrhten,” Annalen der Physik, 1857. 178(9): p. 66-122.
174.L. Magne, S. Pasquiers, N. Blin-Simiand and C. Postel, “Production and reactivity of the hydroxyl radical in homogeneous high pressure plasmas of atmospheric gases containing traces of light olefins,” Journal of Physics D: Applied Physics, 2007. 40(10): p. 3112-3127.
175.J. Amouroux, D. Morvan, S. Cavadias, Ph. Adam, M. Gonnord, K. Coulibaly, A.Vincent, S. Morel, F. Daou, S. Ognier, P. Rousseau and L. Martin, “Pollution control and depollution processes by plasma techniques,” Technical Physics, 2005. 50(5): p. 603-612.
176.F.X. Ye and A. Ohmori, “New application field of plasma spraying technique to environmental depollution,” Transactions of Nonferrous Metals Society of China, 2004. 14(2): p. 55-61.
177.J.E. Foster, B. Weatherford, E. Gillman and B. Yee, “Underwater operation of a DBD plasma jet,” Plasma Sources Science and Technology, 2010. 19(2).
178.K. Teranishi, N. Shimomura, S. Suzuki and H. Itoh, “Development of dielectric barrier discharge-type ozone generator constructed with piezoelectric transformers: Effect of dielectric electrode materials on ozone generation,” Plasma Sources Science and Technology, 2009. 18(4).
179.N. Jiang, A. Ji and Z. Cao, “Atmospheric pressure plasma jet: Effect of electrode configuration, discharge behavior, and its formation mechanism,” Journal of Applied Physics, 2009. 106(1).
180.R. Li , Q. Tang, S. Yin and T. Sato, “Plasma catalysis for CO2 decomposition by using different dielectric materials,” Fuel Processing Technology, 2006. 87(7): p. 617-622.
181.U. Kogelschatz, “Dielectric-barrier discharges: Their History, Discharge Physics, and Industrial Applications,” Plasma Chemistry and Plasma Processing, 2003. 23(1): p. 1-46.
182.R. Tirumala, Y. Li, D.A. Pohlman, D.B. Go, “Corona discharges in sub-millimeter electrode gaps,” Journal of Electrostatics, 2010.
183.J.S. Chang, P.A. Lawless and T. Yamamoto, “Corona discharge processes,” IEEE Transactions on Plasma Science, 1991. 19(6): p. 1152-1166.
184.G.W. Trichel, “The mechanism of the negative point to plane corona near onset,” Physical Review, 1938. 54(12): p. 1078-1084.
185.F. Llewellyn Jones, and G.C. Williams, “The electrical breakdown of gases in non-uniform fields at low pressure,” Proceedings of the Physical Society. Section B, 1953. 66(5): p. 345-361.
186.M. Ulbricht, “Advanced functional polymer membranes,” Polymer, 2006. 47(7): p. 2217-2262.
187.M. Mulder, “Basic principles of membrane technology,” London: Kluwer Academic Publisher., 1991.
188.M. Stanojevic, B. Lazarevic and D. Radic, “Review of membrane contactors designs and applications of different modules in industry,” FME Trans. , 2003. 31 p. 91-98.
189.K. Koczka, J. Manczinger, P. Mizsey, and Z. Fonyo, “Novel hybrid separation processes based on pervaporation for THF recovery,” Chemical Engineering and Processing: Process Intensification, 2007. 46(3): p. 239-246.
190.B.B. Han, C.X. Chen and J.D. Hao, “Pervaporation technology and its application,” Chinese J. Chem. Technol. Market 23 2000.
191.R.W. Baker, “Membrane Technolgy and Applications,” New York: McGraw-Hill, 2001: p. 2-7.
192.J. Rogers, “Membrane technology road map for the chemical process industry,” Proceedings of the 1998 Membrane Technology/Separations Planning Conference, Newton, Massachusetts, USA, 1999: p. 52-58.
193.P.C. Nicholas, “Liquid Filtration,” Butterworth-Heinemann, 1983: p. 319.
194.W.W. Qin, Y. H. Song, S.H. Xiao, J.G. Cheng, P. Zeng, “Industrial Applications of Porous Ceramic Membranes (Pressure[hyphen (true graphic)]Driven Processes),” Membrane Science and Technology. 2008: p. 177-216.
195.H.P. Hsieh, “Chapter 1 Membranes and membrane processes,” Membrane Science and Technology. 1996: p. 1-13.
196.W.S. Ho, and K.K.Sirkar, “Membrane Handbook,” New York: Van Nostrand Reinhold, 1992: p. 457-477.
197.J. Mallevialle, P.E. Odendaal and M.R. Wiesner, “Water Treatment Membrane Processes,” New York, McGraw-Hill, 1996.
198.R. England, “Developments and applications of membranes in chemical and bioprocess engineering,” Journal of Applied Sciences, 2007. 7(15): p. 1991-1997.
199.H.P. Hsieh, R.R. Bhave and H.L. Fleming, “Microporous alumina membranes,” Journal of Membrane Science, 1988. 39(3): p. 221-241.
200.H. Zhao, “Progress and Prospect of Inorganic Membranes in Research and Application - A Report on the 7th International Conference on Inorganic Membranes Held in Dalian, China,” Journal of Natural Gas Chemistry, 2002. 11(1-2): p. 90-91.
201.P. Aptel and C.A. Buckley, “Categories of membrane operations Ch2 in: Water treatment membrane processes,” American Water Works Association Research Foundation, 1996.
202.A.J. Burggraaf and A.J.B.L. Cot, “Chapter 2 Important characteristics of inorganic membranes,” Membrane Science and Technology. 1996: p. 21-34.
203.A. Basile, F. Gallucci and S. Tosti, “Synthesis, characterization and applications of palladium membranes,” Ch8 in: Inorganic membranes: synthesis, characterization and applications. 2008: Elsevier.
204.T. Tsuru, “Nano/subnano-tuning of porous ceramic membranes for molecular separation,” Journal of Sol-Gel Science and Technology, 2008. 46(3): p. 349-361.
205.C. Bianca, “Thermostatted Planar Billiards as Simple Models of Mass Transport in Microporous Membranes,” Communications in Applied and Industrial Mathematics, 2010. 1: p. 22-40.
206.G.Q. Lu, J.C. Diniz da Costa, M. Duke, S. Giessler, R. Socolow, R.H. Williams and T. Kreutz, “Inorganic membranes for hydrogen production and purification: A critical review and perspective,” Journal of Colloid and Interface Science, 2007. 314(2): p. 589-603.
207.S. Benfer, U. Popp, H. Richter, C. Siewert and G. Tomandl, “Development and characterization of ceramic nanofiltration membranes,” Separation and Purification Technology, 2001. 22-23: p. 231-237.
208.A.M. Duong, “A study of heavy oil ultrafiltration using ceramic membranes,” Chemical and Biological Engineering 1996 University of British Colum bia: Vancouver.
209.A. Duong, G. Chattopadhyaya, W.Y. Kwok and K.J. Smith, “An experimental study of heavy oil ultrafiltration using ceramic membranes,” Fuel, 1997. 76(9): p. 821-828.
210.C.P. Leo, “Bimodal Porous Ceramic Membrane Via Nanosized Polystryene Templating : Synthesis, Characterization And Performance Evaluation,” PhD thesis, 2008, Universiti Sains Malaysia.
211.D. Lafarga, J. Santamaria and M. Mendez, “Methane oxidative coupling using porous ceramic membrane reactors-I reactor development,” Chemical Engineering Science, 1994. 49(12): p. 2005-2013.
212.T. Tsuru, H. Kondo, T. Yoshioka and M. Asaeda, “Organic/inorganic nanohybrid membranes for nanofiltration of nonaqueous solutions,” Materials Research Society Symposium - Proceedings. 2003.
213.R. Morrow, “The theory of positive glow corona,” Journal of Physics D: Applied Physics, 1997. 30(22): p. 3099-3114.
214.T. Ihara, M. Miyoshi, M. Ando, S. Sugihara and Y. Iriyama, “Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment,” Journal of Materials Science, 2001. 36(17): p. 4201-4207.
215.F. Z. Wang, J. Li, Wu Yan, Wang Huijuan and Li Guofeng, “Degradation of phenol in aqueous solution by high voltage pulsed discharge plasma,” Gaodianya Jishu/High Voltage Engineering, 2007. 33(2): p. 124-127.
216.V.E. Henrich and R.L. Kurtz, “Surface electronic structure of TiO2: Atomic geometry, ligand coordination, and the effect of adsorbed hydrogen,” Physical Review B, 1981. 23(12): p. 6280-6287.
217.C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, A.M. Czoska, M.C. Paganini and E. Giamello, “Density functional theory and electron paramagnetic resonance study on the effect of N-F codoping of TiO2,” Chemistry of Materials, 2008. 20(11): p. 3706-3714.
218.K. Madhusudan Reddy, C.V. Gopal Reddy and S.V. Manorama, “Preparation, characterization, and spectral studies on nanocrystalline anatase TiO2,” Journal of Solid State Chemistry, 2001. 158(2): p. 180-186.
219.R. Marchand, F. Tessier, Sauze A. Le and N. Diot, “Typical features of nitrogen in nitride-type compounds,” International Journal of Inorganic Materials, 2001. 3(8): p. 1143-1146.
220.H.J. Oh, J.H. Lee, Y. Jeong, Y.J. Kim and C.S. Chi, “Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method,” Surface and Coatings Technology, 2005. 198(1-3): p. 247-252.
221.T.S. Yang, M.C. Yang, C.B. Shiu, W.K. Chang and M.S. Wong, “Effect of N2 ion flux on the photocatalysis of nitrogen-doped titanium oxide films by electron-beam evaporation,” Applied Surface Science, 2006. 252(10): p. 3729-3736.
222.W. Li, L.F. Liu, F.L. Yang, X.W. Zhang and J.C.M. Yu, “Preparation of N doped TiO2 by using ACF as template and its photocatalytic application in removing nitrogen from water,” Ganguang Kexue yu Guanghuaxue/Photographic Science and Photochemistry, 2005. 23(5): p. 374-381.
223.N.C. Saha and H.G. Tompkins, “Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study,” Journal of Applied Physics, 1992. 72(7): p. 3072-3079.
224.R. Nakamura, T. Tanaka and Y. Nakato, “Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes,” Journal of Physical Chemistry B, 2004. 108(30): p. 10617-10620.
225.X. Chen and C. Burda, “Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles,” Journal of Physical Chemistry B, 2004. 108(40): p. 15446-15449.
226.A.L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination,” Physical Review, 1939. 56(10): p. 978.
227.R.A. Spurr, “Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer,” Analytical Chemistry, 1957. 29(5): p. 760-762.
228.S. Wang, X. Wu, W. Qin and J. Zhaohua, “TiO2 films prepared by micro-plasma oxidation method for dye-sensitized solar cell,” Electrochimica Acta, 2007. 53(4): p. 1883-1889.
229.C.M. Huang, L.C. Chen, K.W. Cheng and G.T. Pan, “Effect of nitrogen-plasma surface treatment to the enhancement of TiO2 photocatalytic activity under visible light irradiation,” Journal of Molecular Catalysis A: Chemical, 2007. 261(2): p. 218-224.
230.C.C. Huang, “The mechanisms of nano-sized TiO2 photocatalyst treated by plasma surface modification for photodestruction of the volatile organic compounds,” Institute of Materials Science and Manufacturing that offers Master of Science 2004, Chinese Culture University: Taiwan.
231.F. Zhu, E.S.W. Kong, J. Zhang and Y. Zhang, “Surface modification of TiO2 nanoparticles through plasma polymerization of acrylic acid,” Chemical Physics Letters, 2006. 423(4-6): p. 270-275.
232.Y. Yu, J.C. Yu, J.G. Yu, Y.C. Kwok, Y.K. Che, J.C. Zhao, L. Dingg, W.K. Geg and P.K. Wong, “Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes,” Applied Catalysis A: General, 2005. 289(2): p. 186-196.
233.X. Lin, W. Sun, Y. Yang, C. Chen and J. Ni, “Heterogeneous photocatalysis of methylene blue over titanate nanotubes: Effect of adsorption,” Journal of Colloid and Interface Science, 2010. 356(1): p. 211-216.
234.T. Xu, P.V. Kamat, S. Joshi, A.M. Mebel, Y. Cai and K.E. OShea, “Hydroxyl radical mediated degradation of phenylarsonic acid,” Journal of Physical Chemistry A, 2007. 111(32): p. 7819-7824.
235.M.M. Haring, “Colloid and Capillary Chemistry (Freundlich, Herbert),” Journal of Chemical Education, 1926. 3(12): p. 1454-null.
236.I. Langmuir, “The constitution and fundamental properties of solids and liquids. Part I. Solids,” The Journal of the American Chemical Society, 1916. 38(2): p. 2221-2295.
237.S.M. Ji, P.H. Borse, H.G. Kim, D.W. Hwang, J.S. Jang, S.W. Bae and J.S. Lee, “Photocatalytic hydrogen production from water-methanol mixtures using N-doped Sr2Nb2O7 under visible light irradiation: Effects of catalyst structure,” Physical Chemistry Chemical Physics, 2005. 7(6): p. 1315-1321.
238.N. Guettai and H. Ait Amar, “Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study,” Desalination, 2005. 185(1-3): p. 427-437.
239.Y Lin, C. Ferronato, N. Deng, F. Wu, J.M. Chovelon, “Photocatalytic degradation of methylparaben by TiO2: Multivariable experimental design and mechanism,” Applied Catalysis B: Environmental, 2009. 88(1-2): p. 32-41.
240.V. Augugliaro, L. Palmisano, M. Schiavello, A. Sclafani, L. Marchese, G. Martra, F. Miano, “Photocatalytic degradation of nitrophenols in aqueous titanium dioxide dispersion,” Applied Catalysis, 1991. 69(1): p. 323-340.
241.J.S. Chae, D.S. Jung, Y.S. Bae, S.H. Park, D.J. Lee, S.J. Kim, B.H. Kim and S.C. Jung, “Photo-catalytic degradation of rhodamine B using microwave powered electrodeless discharge lamp,” Korean Journal of Chemical Engineering, 2010. 27(2): p. 672-676.
242.J. Cunningham, G. Al-Sayyed, S. Srijaranal, “In Aquat. Surf. Photochem,” G.R. Helz,. Ed.; Lewis, Boca Raton, Fla: 1994, p 317-348.
243.N. Daneshvar, M. Rabbani, N. Modirshahla, M.A. Behnajady, “Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process,” Journal of Photochemistry and Photobiology A: Chemistry, 2004. 168(1-2): p. 39-45.
244.N.K. Youn, J.E. Heo, O.S. Joo, H. Lee, J. Kim and B.K. Min, “The effect of dissolved oxygen on the 1,4-dioxane degradation with TiO2 and Au-TiO2 photocatalysts,” Journal of Hazardous Materials, 2010. 177(1-3): p. 216-221.
245.M. Ksibi, A. Zemzemi and R. Boukchina, “Photocatalytic degradability of substituted phenols over UV irradiated TiO2,” Journal of Photochemistry and Photobiology A: Chemistry, 2003. 159(1): p. 61-70.
246.W. Bahnemann, M. Muneer and M.M. Haque, “Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions,” Catalysis Today, 2007. 124(3-4): p. 133-148.
247.T. An, W. Zhang, X. Xiao, G. Sheng, J. Fu and X. Zhu, “Photoelectrocatalytic degradation of quinoline with a novel three-dimensional electrode-packed bed photocatalytic reactor,” Journal of Photochemistry and Photobiology A: Chemistry, 2004. 161(2-3): p. 233-242.
248.S. Dong, D. Zhou and X.T. Bi, “Effects of liquid and gas flow rates on the performance of a fluidized bed photocatalytic reactor,” International Journal of Chemical Reactor Engineering, 2008. 6.
249.F. Kiriakidou, D.I. Kondarides and X.E. Verykios, “The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes,” Catalysis Today, 1999. 54(1): p. 119-130.
250.A. Aleboyeh, H. Aleboyeh and Y. Moussa, “Critical effect of hydrogen peroxide in photochemical oxidative decolorization of dyes: Acid Orange 8, Acid Blue 74 and Methyl Orange,” Dyes and Pigments, 2003. 57(1): p. 67-75.
251.A.V. Rupa, D. Manikandan, D. Divakar and T. Sivakumar, “Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17,” Journal of Hazardous Materials, 2007. 147(3): p. 906-913.
252.D.S. Zhao, J.L. Wang, X.H. Zhao, J. Zhang, “TiO2/NaY Composite as Photocatalyst for Degradation of Omethoate,” Chemical Research in Chinese Universities 2009. 25: p. 543-549
253.C.H. Wu and C.H. Yu, “Effects of TiO2 dosage, pH and temperature on decolorization of C.I. Reactive Red 2 in a UV/US/TiO2 system,” Journal of Hazardous Materials, 2009. 169(1-3): p. 1179-1183.
254.P. Bansal, D. Singh and D. Sud, “Photocatalytic degradation of azo dye in aqueous TiO2 suspension: Reaction pathway and identification of intermediates products by LC/MS,” Separation and Purification Technology, 2010. 72(3): p. 357-365.
255.S.A. Abo-Farha, “Photocatalytic Degradation of Monoazo and Diazo Dyes in Wastewater on Nanometer-Sized TiO2,” Journal of American Science, 2010. 6: p. 130-142.
256.V. Rupa, A. Manikandan, D. Divakar, D. Revathi, S. P. Leena, M. Esther, K. Shanthi, T. Sivakumar, “Photocatalytic degradation of tatrazine dye using TiO2 catalyst: Salt effect and kinetic studies,” Indian Journal of Chemical Technology, 2007. 14(1): p. 71-78.
257.W.Y. Wang and Y. Ku, “Effect of solution pH on the adsorption and photocatalytic reaction behaviors of dyes using TiO2 and Nafion-coated TiO2,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 302(1-3): p. 261-268.
258.T.K. Tseng, Y.S. Lin, Y.J. Chen and H. Chu, “A review of photocatalysts prepared by sol-gel method for VOCs removal,” International Journal of Molecular Sciences, 2010. 11(6): p. 2336-2361.
259.M. Zhang, T. An, J. Fu, G. Sheng, X. Wang, X. Hu, X. Ding, “Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor,” Chemosphere, 2006. 64(3): p. 423-431.
260.V. Mirkhani, S. Tangestaninejad, M. Moghadam, M.H. Habibi and A. R.Vartooni, “Photocatalytic degradation of azo dyes catalyzed by Ag doped TiO2 photocatalyst,” Journal of the Iranian Chemical Society, 2009. 6(3): p. 578-587.
261.J. Sun, L. Qiao, S. Sun and G. Wang, “Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation,” Journal of Hazardous Materials, 2008. 155(1-2): p. 312-319.
262.Y. Liu, X. Chen, J. Li, C. Burda, “Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts,” Chemosphere, 2005. 61(1): p. 11-18.
263.L. Defrance and M.Y. Jaffrin, “Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux: Application to a membrane bioreactor used for wastewater treatment,” Journal of Membrane Science, 1999. 152(2): p. 203-210.
264.D.E. Gu, B.C. Yang and Y.D. Hu, “V and N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation,” Catalysis Communications, 2008. 9(6): p. 1472-1476.
265.V. Sukharev and R. Kershaw, “Concerning the role of oxygen in photocatalytic decomposition of salicylic acid in water,” Journal of Photochemistry and Photobiology A: Chemistry, 1996. 98(3): p. 165-169.
266.P. Borker and A.V. Salker, “Photocatalytic degradation of textile azo dye over Ce1-xSnxO2 series,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006. 133(1-3): p. 55-60.
267.S. Kaur and V. Singh, “TiO2 mediated photocatalytic degradation studies of Reactive Red 198 by UV irradiation,” Journal of Hazardous Materials, 2007. 141(1): p. 230-236.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top