跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 15:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉俊廷
研究生(外文):Chun-Ting Yeh
論文名稱:SOFC關鍵材料之製備及其應用於刮刀成型技術製備IT-SOFC之特性研究
論文名稱(外文):Preparation and Application of SOFC Key Materials in IT-SOFC Fabricated by Tape Casting
指導教授:王玉瑞王玉瑞引用關係王錫福
指導教授(外文):Yuh-Ruey WangSea-fue Wang
口試委員:黃炳照鄭淑芬方冠榮余炳盛吳玉娟
口試委員(外文):Bing-Joe HwangSoofin ChengKuan-Zong Kuan-ZongBing-Sheng YuYu-Chuan Wu
口試日期:2012-07-25
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:130
中文關鍵詞:中溫型固態氧化物燃料電池刮刀成型陰極材料
外文關鍵詞:IT-SOFCTape CastingCathode Materials
相關次數:
  • 被引用被引用:1
  • 點閱點閱:492
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用刮刀成型法及網版印刷法製作出Sm0.2Ce0.8O2-δ(SDC)電解質薄膜與陰極厚膜之中溫型陽極支撐平板式固體氧化物燃料電池(IT-SOFC)。
研究結果顯示,在不同厚度的La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)層和LSCF-SDC功能複合層之雙層陰極的電池中,其微結構顯示出具有良好的附著力。當陰極複合層中的LSCF厚度增加時,隨著操作溫度的下降極化電阻值(RP)亦迅速上升;Cell A在650℃下的最大電功率為1.51W/cm2。以水熱法合成出Ce0.8Sm0.2O2-δ之奈米粉末,700℃下的導電率為0.048 S/cm。以固態法製備Cu2+離子摻雜LSCF之陰極材料,其應用於IT-SOFC上並於650及550℃操作溫度下由電化學量測的結果得知,La0.6Sr0.4Co0.2Fe0.7Cu0.1O3-δ及La0.6Sr0.4Co0.1Fe0.8Cu0.1O3-δ之單元電池相較於LSCF之單元電池極化電阻值略低,顯示出摻雜Cu2+離子有利於SOFC的電化學性能;La0.6Sr0.4Co0.1Fe0.8Cu0.1O3-δ之單元電池在700℃下的最大電功率為1.24 W/cm2。而以Pechini法所製備的SrCo1-ySbyO3-δ粉末,當Sb摻雜含量為2 mol%時,SrCo0.98Sb0.02O3-δ之結構為正方晶,在450℃下獲得最大電導率507 S/cm;SrCo0.98Sb0.02O3-δ-SDC複合陰極之單元電池的最大電功率為0.487 W/cm2。


In this study, anode-supported planar IT-SOFCs, with a thin Sm0.2Ce0.8O2−δ (SDC) electrolyte film and a different-layer cathode, are fabricated using tape-casting and screen-printing processes.
The bi-layer cathode consists of a current collector La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) layer and a functional LSCF–SDC composite layer in various thicknesses. Microstructure studies reveal that the interfaces among various layers show good adhesion. Cell A reports the lowest ohmic (R0) and polarization (RP) resistances. RP, which increases with the thickness of the LSCF–SDC composite layer in the cathode, rises rapidly as the temperature drops. The best cell performances are observed at 650 oC for all cases, in which Cell A shows a maximum power density of 1.51W/cm2.
Ce1-xSmxO2-δ nanopowders were synthesized using coprecipitation-hydrothermal method. The sintered Ce0.8Sm0.2O2-δ ceramics registered an electrical conductivity of 0.048 S/cm at 700?C. Cu2+ ions doped La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes are prepared for use in solid oxide fuel cells (SOFCs). Single cells with the La0.6Sr0.4Co0.2Fe0.8O3−δ , La0.6Sr0.4Co0.2Fe0.7Cu0.1O3−δ , and La0.6Sr0.4Co0.1Fe0.8Cu0.1O3−δ cathodes operating at 650 oC and 550 oC show similar ohmic resistance (R0) values while the polarization resistance (RP) values of the cells with the La0.6Sr0.4Co0.2Fe0.7Cu0.1O3−δ and La0.6Sr0.4Co0.1Fe0.8Cu0.1O3−δ cathodes are slightly lower than that of the single cell with the La0.6Sr0.4Co0.2Fe0.8O3−δ cathode, indicating that the Cu2+-doped LSCF cathode exhibits a greater electrochemical catalytic activity for oxygen reduction. Maximum power densities of the cells with the La0.6Sr0.4Co0.2Fe0.8O3−δ , La0.6Sr0.4Co0.2Fe0.7Cu0.1O3−δ , and La0.6Sr0.4Co0.1Fe0.8Cu0.1O3−δ cathodes operating at 700 oC read respectively 1.07, 1.15, and 1.24 W/cm2. It is evident that the doping of Cu2+ ions in LSCF is beneficial to the electrochemical performance of the cells. SrCo1-ySbyO3−δ powders were prepared by a modified Pechini method. For the SrCo0.98Sb0.02O3−δ ceramic, electrical conductivity reached a maximum of 507 S/cm at 450 oC. The single cell with the SrCo0.98Sb0.02O3−δ -SDC composite cathode appeared to reduce the impedances with the R0 and RP at 700 oC reading respectively 0.109 cm2 and 0.127 cm2. Without microstructure optimization and measured at 700 oC, the single cells with the pure SrCo0.98Sb0.02O3−δ cathode and the SrCo0.98Sb0.02O3−δ -SDC composite cathode, demonstrated maximum power densities of 0.100 W/cm2 and 0.487 W/cm2.

中文摘要 .i
英文摘要 ...ii誌謝 ..iv
目錄 vi
表目錄 ..ix
圖目錄 ...x
第一章 緒論 1
1.1前言1
1.2研究動機 1
1.3研究目的 3
第二章 文獻回顧及理論背景 5
2.1固態氧化物燃料電池之基本原理 5
2.2固態氧化物燃料電池之關鍵材料 10
2.2.1 電解質材料(electrolyte materials) 10
2.2.2 陰極材料(cathode materials) 16
2.2.3 陽極材料(anode materials)[35] 19
2.2.4 SOFC關鍵材料之製備方法 21
2.3交流阻抗法 23
2.3.1 交流阻抗原理 23
2.3.2 等效電路模型[52] 24
2.3.3 交流阻抗法之應用 29
2.4平板型固態氧化物燃料電池之設計 32
第三章 實驗方法 36
3.1製備雙層LSCF基陰極之IT-SOFC 36
3.1.1 原料 36
3.1.2 單元電池之製備流程 36
3.2製備Ce1-xSmxO2-δ之電解質材料 39
3.3製備(LaSr)(CoFeCu)O3−δ之陰極材料 41
3.3.1 原料 41
3.3.2 (LaSr)(CoFeCu)O3−δ陰極之製備流程 41
3.3.3 單元電池之製備 43
3.4製備SrCo1-ySbyO3-δ之陰極材料 44
3.4.1 原料 44
3.4.2 SrCo1-xSbxO3-δ陰極之製備流程 44
3.4.3 單元電池之製備 46
3.5實驗儀器分析規格與操作條件 47
3.5.1 X光繞射儀 (X-Ray Diffractometer, XRD) 47
3.5.2 場發射掃描式電子顯微鏡 (FE-SEM) 47
3.5.3 體密度量測 47
3.5.4 雷射粒徑分析儀 48
3.5.5 熱差與熱重分析儀 (DTA/TG) 48
3.5.5 黏度計 48
3.5.6 流變儀 49
3.5.7 刮刀成型機 50
3.5.8 疊壓機與熱水均壓機 51
3.5.9 網印機 51
3.5.10 電化學分析與量測平臺設備 51
第四章 結果與討論 53
4.1雙層LSCF基陰極對IT-SOFC特性之影響 53
4.1.1單元電池顯微結構及熱穩定性分析 53
4.1.2單元電池之阻抗分析 58
4.1.2單元電池之電功率分析 72
4.2 水熱合成Ce1-xSmxO2-δ電解質材料之特性研究 79
4.2.1 水熱合成前後之電解質材料結構相及成分分析 79
4.2.2 水熱合成後之電解質材料微結構及電性分析 86
4.3 (LaSr)(CoFeCu)O3−δ陰極對IT-SOFC特性之影響 90
4.3.1(LaSr)(CoFeCu)O3−δ材料之物性分析 90
4.3.2(LaSr)(CoFeCu)O3−δ材料之電性及熱膨脹分析 93
4.3.3單元電池之顯微結構及電性分析 97
4.4 SrCo1−ySbyO3−δ陰極對IT-SOFC特性之影響 104
4.4.1 SrCo1−ySbyO3−δ陶瓷之物性及電性分析 104
4.4.2單元電池之電性及材料化學穩定性分析 110
第五章 結論 116
5.1 雙層LSCF基陰極對IT-SOFC特性之影響 116
5.2 水熱合成Ce1-xSmxO2-δ電解質材料之特性研究 116
5.3 (LaSr)(CoFeCu)O3−δ陰極對IT-SOFC特性之影響 117
5.4 SrCo1−xSbxO3−δ陰極對IT-SOFC特性之影響 117
參考文獻 119

[1]M.D. Mat, X. Liu, Z. Zhu, B. Zhu, “Development of cathodes for methanol and ethanol fuelled low temperature (300-600 °C) solid oxide fuel cells”, International Journal of Hydrogen Energy vol. 32 (7) (2007) pp.796–801.
[2]T.L. Wen, D. Wang, M. Chen, H. Tu, Z. Zhang, H. Nie, W. Huang, “Material research for planar SOFC stack”, Solid State Ionics vol. 148 (3-4) (2002) pp.513–519.
[3]E. Ivers-Tiffée, A. Weber, D. Herbstritt, “Materials and technologies for SOFC-components”, Journal of the European Ceramic Society vol. 21 (10-11) (2001) pp.1805–1811.
[4]M. Zhang, M. Yang, Z. Hou, Y. Dong, M. Cheng, “A bi-layered composite cathode of La0.8Sr0.2MnO3-YSZ and La0.8Sr0.2MnO3-La0.4Ce0.6O1.8 for IT-SOFCs”, Electrochimica Acta vol.53 (15) (2008) pp.4998–5006.
[5]J.W. Fergus, “Electrolytes for solid oxide fuel cells”, Journal of Power Sources vol.162 (1) (2006) pp.30–40.
[6]S.B. Adler, “Factors governing oxygen reduction in solid oxide fuel cell cathodes”, Chemical Reviews vol.104 (10) (2004) pp.4791–4843.
[7]J.M. Ralph, A.C. Schoeler, M. Krumpelt, “Materials for lower temperature solid oxide fuel cells”, Journal of Materials Science vol.36 (5) (2001) pp.1161–1172.
[8]J.M. Ralph, C. Rossignol, R. Kumar, “Cathode materials for reduced-temperature SOFCs”, Journal of the Electrochemical Society vol.150 (11) (2003) pp.A1518–A1522.
[9]W. Guo, J. Liu, C. Jin, H. Gao, Y. Zhang, “Electrochemical evaluation of La 0.6Sr 0.4Co 0.8Fe 0.2O 3-δ-La 0.9Sr 0.1Ga 0.8Mg 0.2O 3-δ composite cathodes for La 0.9Sr 0.1Ga 0.8Mg 0.2O 3-δ electrolyte SOFCs”, Journal of Alloys and Compounds vol.473 (1-2) (2009) pp.43–47.
[10]P. Ried, P. Holtappels, A. Wichser, A. Ulrich, T. Graule, “Synthesis and characterization of La0.6Sr0.4Co 0.2Fe0.8O3-δ and Ba0.5Sr 0.5Co0.8Fe0.2O3-δ”, Journal of the Electrochemical Society vol.155 (10) (2008) pp.B1029–B1035.
[11]H.C. Yu, F. Zhao, A.V. Virkar, K.Z. Fung, “Electrochemical characterization and performance evaluation of intermediate temperature solid oxide fuel cell with La0.75Sr0.25CuO2.5-δ cathode”, Journal of Power Sources vol.152 (1-2) (2005) pp.22–26.
[12]M. Liu, D. Dong, F. Zhao, J. Gao, D. Ding, X. liu, G. Meng, “High-performance cathode-supported SOFCs prepared by a single-step co-firing process”, Journal of Power Sources vol.182 (2) (2008) pp.585–588.
[13]J. Piao, K. Sun, N. Zhang, S. Xu, “A study of process parameters of LSM and LSM-YSZ composite cathode films prepared by screen-printing”, Journal of Power Sources vol.175 (1) (2008) pp.288–295.
[14]Y. Guo, H. Shi, R. Ran, Z. Shao, “Performance of SrSc0.2Co0.8O3-δ + Sm0.5Sr0.5CoO3-δ mixed-conducting composite electrodes for oxygen reduction at intermediate temperatures”, International Journal of Hydrogen Energy vol.34 (23) (2009) pp.9496–9504.
[15]Y. Leng, S.H. Chan, Q. Liu, “Development of LSCF-GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte”, International Journal of Hydrogen Energy vol.33 (14) (2008) pp.3808–3817.
[16]J. Zhang, Y. Ji, H. Gao, T. He, J. Liu, “Composite cathode La0.6Sr0.4Co 0.2Fe0.8O3-Sm0.1Ce0.9O1.95-Ag for intermediate-temperature solid oxide fuel cells”, Journal of Alloys and Compounds vol.395 (1-2) (2005) pp.322–325.
[17]J. Chen, F. Liang, B. Chi, J. Pu, S.P. Jiang, L. Jian, “Palladium and ceria infiltrated La 0.8Sr 0.2Co 0.5Fe 0.5O 3-δ cathodes of solid oxide fuel cells”, Journal of Power Sources vol.194 (1) (2009) pp.275–280.
[18]F. Liang, J. Chen, S.P. Jiang, B. Chi, J. Pu, L. Jian, “Development of nanostructured and palladium promoted (La,Sr) Mn O3 -based cathodes for intermediate-temperature SOFCs”, Electrochemical and Solid-State Letters vol.11 (12) (2008) pp.B213–B216.
[19]X. Ding, X. Kong, J. Jiang, C. Cui, L. Guo, “Electrochemical performance of La0.7Sr0.3CuO3-δ-Sm0.2Ce0.8O2-δ functional graded composite cathode for intermediate temperature solid oxide fuel cells”, International Journal of Hydrogen Energy vol.35 (4) (2010) pp.1742–1748.
[20]R.N. Basu, A.D. Sharma, A. Dutta, J. Mukhopadhyay, “Processing of high-performance anode-supported planar solid oxide fuel cell”,Int. International Journal of Hydrogen Energy vol.33 (20) (2008) pp.5748–5754.
[21]C. Jin, J. Liu, W. Guo, Y. Zhang, “Electrochemical characteristics of an La0.6Sr 0.4Co0.2Fe0.8O3-La0.8Sr0.2MnO3 multi-layer composite cathode for intermediate-temperature solid oxide fuel cells”, Journal of Power Sources vol.183 (2) (2009) pp.506–511.
[22]X. Ding, C. Cui, L. Guo, “Thermal expansion and electrochemical performance of La0.7Sr0.3CuO3-δ-Sm0.2Ce0.8O2-δ composite cathode for IT-SOFCs”, Journal of Alloys and Compounds vol.481 (1-2) (2008) pp.845–850.
[23]H.C. Yu, K.Z. Fung, “Electrode properties of La1-xSrxCuO2.5-δ as new cathode materials for intermediate-temperature SOFCs”, Journal of Power Sources vol.133 (2) (2004) pp.162–168.
[24]K. Yasumoto, Y. Inagaki, M. Shiono, M. Dokiya, “An (La,Sr)(Co,Cu)O3-δ cathode for reduced temperature SOFCs”, Solid State Ionics vol.148 (3-4) (2002) pp.545–549.
[25]S.P. Simner, M.D. Anderson, J.W. Stevenson, “La(Sr)FeO3 SOFC cathodes with marginal copper doping”, Journal of the American Ceramic Society vol.87 (8) (2004) pp.1471–1476.
[26]U.F. Vogt, P. Holtappels, J. Sfeir, J. Richter, S. Duval, D. Wiedenmann, “Influence of A-site variation and B-site substitution on the physical properties of (La,Sr)FeO3 based perovskites”, Fuel Cells vol.9 (6) (2009) pp.899–906.
[27]F. Wang, Q. Zhou, T. He, G. Li, and H. Ding, “Novel SrCo1-yNbyO3-δ cathodes for intermediate-temperature solid oxide fuel cells”, Journal of Power Sources vol.195 (12) (2010) pp.3772-3778.
[28]W. Zhou, W. Jin, Z. Zhu, and Z. Shao, “Structural, electrical and electrochemical characterizations of SrNb0.1Co0.9O3-δ as a cathode of solid oxide fuel cells operating below 600 °C”, International Journal of Hydrogen Energy vol.35 (3) (2010) pp.1356-1366.
[29]P. Zeng, R. Ran, Z. Chen, W. Zhou, H. Gu, Z. Shao, and S. Liu, “Efficient stabilization of cubic perovskite SrCoO 3-δ by B-site low concentration scandium doping combined with sol-gel synthesis”, Journal of Alloys and Compounds vol.455 (1-2) (2008) pp.465-470.
[30]A. Aguadero, D. Perez-Coll, de la Calle, C., J.A. Alonso, M.J. Escudero, and L. Daza, “SrCo1-xSbxO3-δ perovskite oxides as cathode materials in solid oxide fuel cells “, Journal of Power Sources vol.192 (1) (2009) pp.132-137.
[31]J.H. Kim, S. W. Baek, C. Lee, K. Park, and J. Bae, “Performance analysis of cobalt-based cathode materials for solid oxide fuel cells”, Solid State Ionics vol.179 (2009) pp.132-137.
[32]T. Nagai, W. Ito, and T. Sakon, “Relationship between cation substitution and stability of perovskite structure in SrCoO3-δ-based mixed conductors”, Solid State Ionics vol.177 (39-40) (2007) pp.3433-3444.
[33]A.L. Shaula, V.V. Kharton, F.M.B. Marques, A.V. Kovalevsky, A.P. Viskup, and E.N. Naumovich, “Phase interaction and oxygen transport in oxide composite materials”, British Ceramic Transactions vol.103 (5) (2004) pp.211-218.
[34]衣寶廉, “燃料電池-原理與應用” , 臺北, 五南圖書, 2005[民94]
[35]A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine,A.J. McEvoy, M. Mogensen, S.C. Singhal, and J. Vohs, “Advanced anodes for high-temperature fuel cells”, Nature Materials vol.3 (1) (2004) pp.17-27.
[36]O. Yamamoto, “Solid oxide fuel cells: fundamental aspects and prospects”, Electrochimica Acta vol.45 (2000) pp.2423-2435.
[37]V.V. Kharton, F.M.B. Marques, A. Atkinson, “Transport properties of solid oxide electrolyte ceramics: a brief review,” Solid State Ionics vol.174 (2004) pp.135– 149.
[38]D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, “Intermediate temperature solid oxide fuel cells”, Chemical Society Reviews vol.37 (2008) pp.1568-1578.
[39]H. Inaba, H. Tagawa, “Ceria-based solid electrolytes”,Solid State Ionics vol.83 (1996) pp.1-16.
[40]J.D. Kim, G.D. Kim, J.W. Moon, Y.I. Park, W.H. Lee, K. Kobayashi, M. Nagai, C.E. Kim, “Characterization of LSM–YSZ composite electrode by ac impedance spectroscopy”, Solid State Ionics vol.143 (2001) pp.379–389.
[41]A. Weber, E. Ivers-Tiffée, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications”, Journal of Power Sources vol.127 (1-2) (2004) pp. 273-283.
[42]L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, “Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 2. The system La1-xSrxCo0.2Fe0.8O3”, Solid State Ionics vol.76 (3-4) (1995) pp.273-283.
[43]K.T. Lee, A. Manthiram, “Effect of cation doping on the physical properties and electrochemical performance of Nd0.6Sr0.4Co0.8M0.2O3−δ (M=Ti, Cr, Mn, Fe, Co, and Cu) cathodes”, Solid State Ionics vol.178 (2007) pp.995-1000.
[44]Q. Ma, R. Peng, Y. Lin, J. Gao, G. Meng, “A high-performance ammonia-fueled solid oxide fuel cell”, Journal of Power Sources vol.161 (2006) pp.95-98.
[45]T. Hibino, Atsuko Hashimoto, Masanori Suzuki, and Mitsuru Sano, “A solid oxide fuel cell using Y-doped BaCeO3 with Pd-loaded FeO anode and Ba0.5Pr0.5CoO3 cathode at low temperatures”, Journal of the Electrochemical Society vol.149 (2002) pp.A1503-A1508.
[46]R. Peng, Wu Yan, Yang Lizhai, and Mao Zongqiang, “Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film”, Solid State Ionics, vol.177 (2006) pp.389-393.
[47]B. Lin, Songlin Wang, Huili Liu, Kui Xie, Hanping Ding, Mingfei Liu, and Guangyao Meng, “SrCo0.9Sb0.1O3−δ cubic perovskite as a novel cathode for intermediate-to-low temperature solid oxide fuel cells”, Journal of Alloys and Compounds, vol. 472 (2009) pp.556–558.
[48]L.M. Ushkalov, O.D. Vasylyev, Ye.G. Pryschepa, A.V. Samelyuk, V.G. Melakh, “Synthesis and study of LSCF perovskites for IT SOFC cathode application”, ECS Transactions vol.25 (2 PART 3) (2009) pp. 2421-2426.
[49]J. Spooren, R.I. Walton and F. Millange, “A study of the manganites La0.5M0.5MnO3 (M=Ca, Sr, Ba) prepared by hydrothermal synthesis”, Journal of Materials Chemistry vol.15 (2005) pp.1542–1551.
[50]X. Lu, T.S. Pine, D.R. Mumm, J. Brouwer, “Modified Pechini synthesis and characterization of Y-doped strontium titanate perovskite”, Solid State Ionics vol.178 (19-20) (2007) pp. 1195-1199.
[51]A.J. Bard, “Electrochemical Methods Fundamentals and Applications”, John Wiley & Sons, Inc (2001).
[52]R. O’Hayre原著, 王曉紅譯, “燃料電池基礎”, 臺北, 全華圖書, 2008[民97]
[53]Q.A. Huang, R. Hui, B. Wang, J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochimica Acta vol.52 (28) (2007) pp.8144-8164.
[54]S.B. Adler, “Limitations of charge-transfer models for mixed-conducting oxygen electrodes”, Solid State Ionics vol.135 (2000) pp.603-612.
[55]S.B. Adler, “Limitations of charge-transfer models for mixed-conducting oxygen electrodes” , Solid State Ionics vol.135 (2000) pp.603–612.
[56]N.Q. Minh, “Solid oxide fuel cell technology - features and applications”, Solid State Ionics vol.174 (2004) pp.271–277.
[57]EG&G Technical Services, Inc., USDOE, “Fuel Cell Handbook (Seventh Edition)”, Section 7 SOLID OXIDE FUEL CELLS (2004) pp. 7-18.
[58]E.P. Murray, T. Tsai, S.A. Barnett, “Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: An impedance spectroscopy study”, Solid State Ionics vol.110 (3-4) (1998) pp. 235-243.
[59]E. Perry Murray, S.A. Barnett, “(La,Sr)MnO3-(Ce,Gd)O2-x composite cathodes for solid oxide fuel cells”, Solid State Ionics vol.143 (3-4) pp.265-273.
[60]C.Xia, M. Liu, “Novel cathodes for low-temperature solid oxide fuel cells”, Advanced Materials vol.14 (7) (2002) pp.521-523.
[61]C. Fu, S.H. Chan, Q. Liu, X. Ge, G. Pasciak, “Fabrication and evaluation of Ni-GDC composite anode prepared by aqueous-based tape casting method for low-temperature solid oxide fuel cell”, International Journal of Hydrogen Energy vol.35 (1) (2010) pp.301-307.
[62]X. Xu, C. Xia, G. Xiao, D. Peng, “Fabrication and performance of functionally graded cathodes for IT-SOFCs based on doped ceria electrolytes”, Solid State Ionics vol.176 (17-18) (2005) pp.1513-1520.
[63]H.J. Hwang, J.W. Moon, S. Lee, E.A. Lee, “Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs”, Journal of Power Sources vol.145 (2) (2005) pp. 243-248.
[64]T.L. Reitz, H. Xiao, “Characterization of electrolyte-electrode interlayers in thin film solid oxide fuel cells”, Journal of Power Sources vol.161 (1) (2006) pp.437-443.
[65]X. Xu, Z. Jiang, X. Fan, C. Xia, “LSM-SDC electrodes fabricated with an ion-impregnating process for SOFCs with doped ceria electrolytes”, Solid State Ionics vol.177 (19-25 SPEC. ISS.) (2006) pp.2113-2117.
[66]M.J. Escudero, A. Aguadero, J.A. Alonso, L. Daza, “A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy”, Journal of Electroanalytical Chemistry vol.611 (1-2) (2007) pp. 107-116.
[67]M. Prestat, A. Infortuna, S. Korrodi, S. Rey-Mermet, P. Muralt, L.J. Gauckler, “Oxygen reduction at thin dense La0.52Sr0.48Co0.18Fe0.82O3-δ electrodes: Part II: Experimental assessment of the reaction kinetics”, Journal of Electroceramics vol.18 (1-2) (2007) pp.111-120.
[68]R. Barfod, A. Hagen, S. Ramousse, P.V. Hendriksen, M. Mogensen, “Break down of losses in thin electrolyte SOFCs”, Fuel Cells vol.6 (2) (2006) pp.141-145.
[69]R. Barfod, M. Mogensen, T. Klemensø, A. Hagen, Y.L. Liu, P. Vang Hendriksen, “Detailed characterization of anode-supported SOFCs by impedance spectroscopy”, Journal of the Electrochemical Society vol.154 (4) (2007) pp. B371-B378.
[70]S.P. Yoon, J. Han, S.W. Nam, T.H. Lim, I.-H. Oh, S.A. Hong, Y.S Yoo, H.C. Lim, “Performance of anode-supported solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol-gel coating technique”, Journal of Power Sources vol.106 (1-2) (2002) pp.160-166.
[71]K. Chen, X. Chen, Z. Lü, N. Ai, X. Huang, W. Su, “Performance of an anode-supported SOFC with anode functional layers”, Electrochimica Acta vol.53 (27) (2008) pp.7825-7830.
[72]M.Y. Cheng, D.H. Hwang, H.S. Sheu, B.J. Hwang, “Formation of Ce0.8Sm0.2O1.9 nanoparticles by urea-based low-temperature hydrothermal process”, Journal of Power Sources vol.175 (2008) pp.137-144.
[73]B. Liu, Q. Li , X. Du, B. Liu, M. Yao, Z. Li, R. Liu, D. Liu, X. Zou, H. Lv, D. Li , B. Zou, T. Cui, and G. Zou, “Facile hydrothermal synthesis of CeO2 nanosheets with high reactive exposure surface”, Journal of Alloys and Compounds vol.509 (2011) pp.6720-6724.
[74]J. Basu, R. Divakar, J.P. Winterstein, and C.B. Carter, “Low-temperature and ambient-pressure synthesis and shape evolution of nanocrystalline pure, La-doped and Gd-doped CeO2”, Applied Surface Science vol.256 (2010) pp.3772-3777.
[75]W. Wang, J.Y. Howe, Y. Li, X. Qiu, D.C. Joy, M.P. Paranthaman, M.J. Doktycz, and B. Gu, “A surfactant and template-free route for synthesizing ceria nanocrystals with tunable morphologies”, Journal of Materials Chemistry Vol.20 (2010) pp.7776-7781.
[76]C. Levy, C. Guizard, and A. Julbe, “Soft-chemistry synthesis, characterization, and stabilization of CGO/Al2O3/Pt nanostructured composite powders”, Journal of the American Ceramic Society Vol.90 (2007) pp.942-949. (Raman spectra)
[77]A. Mineshige , T. Tajia, Y. Muroi, M. Kobune, S. Fujii, N. Nishi, M. Inaba , and Z. Ogumi, “Oxygen chemical potential variation in ceria-based solid oxide fuel cells Determined by Raman Spectroscopy”, Solid State Ionics vol.135 (2000) pp.481-485.
[78]I. Kosacki, T. Suzuki, H.U. Anderson, and P. Colomban, “Raman scattering and lattice defects in nanocrystalline CeO2 thin films”, Solid State Ionics vol.149 (2002) pp.99-105.
[79]J.W. Fergus, “Electrolytes for solid oxide fuel cells”, Journal of Power Sources vol.162 (2006) pp.30-40.
[80]Q. Pu, G. Xu, Z. Zhang, Z. Ding, “Phonon vibration and transport properties of La1.85-xSr0.15+xCu1-xFexOy”, Physica C: Superconductivity and its Applications vol.370 (3) (2002) pp. 163-168.
[81]S. Simner, M. Anderson, J. Bonnett, J. Stevenson, “Enhanced low temperature sintering of (Sr, Cu)-doped lanthanum ferrite SOFC cathodes”, Solid State Ionics vol.175 (1-4) (2004) pp.79-81.
[82]P. Ried, P. Holtappels, A. Wichser, A. Ulrich, , T. Graule, “Synthesis and characterization of La0.6Sr0.4Co0.2Fe0.8O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ”, Journal of the Electrochemical Society vol.155 (10) (2008) pp.B1029-B1035.
[83]W. Sitte, E. Bucher, W. Preis, “Nonstoichiometry and transport properties of strontium-substituted lanthanum cobaltites”, Solid State Ionics vol.154-155 (2002) pp.517-522.
[84]L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, “Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3”, Solid State Ionics vol.76 (3-4) (1995) pp. 259-271.
[85]M. Prestat, J.F. Koenig, L.J. Gauckler, “Oxygen reduction at thin dense La0.52Sr0.48Co 0.18Fe0.82O3-δ electrodes: Part I: Reaction model and faradaic impedanc”, Journal of Electroceramics vol.18 (1-2) (2007) pp.87-101.
[86]E. Bucher, W. Sitte, “Defect chemical analysis of the electronic conductivity of strontium-substituted lanthanum ferrite”, Solid State Ionics 173 (1-4 SPEC. ISS.) (2004) pp.23-28.
[87]A. Esquirol, N.P. Brandon, J.A. Kilner, M. Mogensen, “Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate- temperature SOFCs”, Journal of the Electrochemical Society vol.151 (11) (2004) pp.A1847-A1855.
[88]D. Huan, X.U. Qing, Z. Feng, W. Chen, H. Liu, J. Zhou, “Structure and mixed electronic-ionic conducting properties of La0.6Sr0.4Co1-yFeyO3 (y = 0~1.0) ceramics made by a citrate method”, Journal of Wuhan University of Technology-Materials Science Edition vol.23 (2008) pp. 81-84.
[89]A.R. Ruffa, “Thermal expansion in insulating materials”, Journal of Materials Science vol.15 (9) (1980) pp.2258-2267.
[90]A.R. Ruffa, “Empirical determination of thermal expansion in insulators with no experimental input”, Journal of Materials Science vol.15 (9) (1980) pp. 2268-2274.
[91]A. Fossdal, M. Menon, I. Wærnhus, K. Wiik, M.A. Einarsrud, T. Grande, “Crystal structure and thermal expansion of La1-xSrxFeO3-δ materials”, Journal of the American Ceramic Society vol.87 (10) (2004) pp.1952-1958.
[92]E.P. Murray, M.J. Sever, S.A. Barnett, “Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes”, Solid State Ionics vol.148 (2002) pp.27-34.
[93]K.L. Duncan, K.T. Lee, E.D. Wachsman, “Dependence of open-circuit potential and power density on electrolyte thickness in solid oxide fuel cells with mixed conducting electrolytes”, Journal of Power Sources vol.196 (5) (2011) pp.2445-2451.
[94]C. Ding, H. Lin, K. Sato, K. Amezawa, T. Kawada, J. Mizusaki, T. Hashida, “Effect of thickness of Gd0.1Ce0.9O1.95 electrolyte films on electrical performance of anode-supported solid oxide fuel cells”, Journal of Power Sources vol.195 (17) (2010) pp.5487-5492
[95]J.S. Ahn, H. Yoon, K.T. Lee, M.A. Camaratta, E.D. Wachsman, “Performance of IT-SOFC with Ce0.9Gd0.1O1.95 Functional Layer at the Interface of Ce0.9Gd0.1O1.95 Electrolyte and Ni-Ce0.9Gd0.1O1.95 Anode”, Fuel Cells vol.9 (5) (2009) pp. 643-649.
[96]Y. Xie, R. Neagu, C.S. Hsu, X. Zhang, C. Decès-Petit, W. Qu, R. Hui, D. Ghosh, “Thin film solid oxide fuel cells deposited by spray pyrolysis”, Journal of Fuel Cell Science and Technology vol.7 (2) (2010) pp.0210071-0210076.
[97]M. Chen, B.H. Kim, Q. Xu, B.G. Ahn, D.P. Huang, “Fabrication and performance of anode-supported solid oxide fuel cells via slurry spin coating”, Journal of Membrane Science vol.360 (1-2) (2010) pp.461-468.
[98]J. Van herle, R. Ihringer, R.V. Cavieres, L. Constantin, O. Bucheli, “Anode supported solid oxide fuel cells with screen-printed cathodes”, Journal of the European Ceramic Society vol.21 (10-11) (2001) pp.1855-1859.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top