跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 11:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:傅郁霖
研究生(外文):Yu-Lin Fu
論文名稱:應用改良式演算法於供應鏈網路運輸問題
論文名稱(外文):Applying an Improved Algorithm for Supply Chain Network Transportation Problems
指導教授:車振華車振華引用關係
口試委員:江梓安王河星
口試日期:2012-06-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:工業工程與管理系碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:49
中文關鍵詞:供應鏈網路運輸問題數量折扣規模經濟多目標演算法
外文關鍵詞:supply chain networktransportation problemsdiscounteconomics of scalemulti-objective algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著全球化的市場越趨競爭,供應鏈的重要程度也越顯重要,企業為快速滿足客戶需求縮短產品生產週期使得產品運輸時間日趨嚴苛。不同的環境、地形及車種皆會影響到運輸可靠度,為了能將原料、產品正確且完整的送達客戶手中,運輸作業的規劃顯得格外重要。
本研究探討多目標供應鏈網路運輸問題,進一步將規模經濟、數量折扣等概念導入最佳化決策模式中,改良現有演算法容易陷入區域最佳解的狀況且使能夠更廣泛應用於各式供應鏈運輸網路問題。ISPGA演算法引用貪婪的概念再以最小成本法進行染色體編碼以求得較佳初始解,加入優化機制提高演算的效率以有效逼近全域最佳解,並利用田口實驗設計方法推算出最佳參數,最後將ISPGA演算法導入案例與其他三個多目標演算法MOPSO、SMPSO、NSGAII進行分析比較,結果顯示ISPGA演算法具有較佳的求解效率。


The market has become more competitive with the globalization, so the supply chain is more important than before. The enterprises in order to satisfy customer''s demand quickly and shorten the product’s cycle time to make the product’s transportation time increasingly stringent. Different environments, terrain and types of vehicles will affect the transportation reliability. In order to correct and complete the delivery to customers, the transportation planning is particularly important. The study is to discuss the multi-objective supply chain network transportation problems. This study consider the concept of economies of scale, volume discounts, optimize decision-making model. In order to avoid falling into local optimal solution, we modify our algorithm and make it more and more useful. ISPGA algorithm refers to the general idea of greedy algorithm, and least-cost method. This study uses ISPGA algorithm to encode chromosome and get superior optimization solution than before. Additionally, this study adds the optimization operation and Taguchi method to improve the calculation efficiency approaching the global optimized solution and calculate the optimal parameters. Finally, we compare three algorithm with MOPSO、SMPSO and NSGAII, the result shows that ISPGA algorithm has a superior solution efficiency.

摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 論文架構 2
第二章 文獻探討 4
2.1供應鏈網路定義 4
2.2供應鏈網路相關文獻 5
2.3 運輸問題 9
2.4數量折扣 10
2.5規模經濟 13
2.6多目標最佳化 14
第三章 研究方法 17
3.1 問題描述與定義 17
3.2 研究架構 18
3.3 數學模式 20
第四章ISPGA演算法程序 24
第五章 案例導入與結果分析 29
5.1績效指標 29
5.2參數設定 30
5.3結果比較 32
5.4 案例導入結果 37
第六章 結論 42
參考文獻 43


[1]D. S. Levi, P Kaminsky and E S. Llevi., "Designing and Managing the Supply Chain," IIE Transactions, Vol. 35, No. 11, 2003, pp. 1065-1075.
[2]R. Jun-Hyung, D. Vivek, N Efstratios. and Pistikopoulos., "A ilevel programming framework for enterprise-wide process networks nder uncertainty," Computers & Chemical Engineering, Vol. 28, No. 6-7, 2004, pp. 1121-1129.
[3]A. D. Ross, "A two-phased approach to the supply network reconfiguration problem,". European Journal of Operational Research, Vol. 122, No. 1, 2000, pp. 18-30.
[4]C. J. Vidal and M. Goetschalckx, "A global supply chain model with transfer pricing and transportation cost allocation,". European Journal of Operational Research, Vol. 129, No. 1, 2001, pp. 134-158.
[5]W. Dullaert, O. Braysy, M. Goetschalckx and B. Raa, "Supply chain design: support for managerial and policy decisions," European Journal of Transport and Infrastructure Research, Vol. 7, No.2, 2007, pp. 73-91.
[6]N. Aras, D. Aksen and A. G. Tanugur, "Locating collection centers for incentive- dependent returns under a pick-up policy with capacitated vehicles," European Journal of Operational Research, Vol. 191, No. 3, 2008, pp. 1223-40.
[7]K. Demirli and A. Yimer, "Fuzzy scheduling of a build-to-order supply chain," International Journal of Production Research, Vol. 46, No 14, 2008, pp. 3931-3958.
[8]H. J. Wu and S. Dunn, "Environmentally Responsible Logistics Systems, " International Journal of Physical Distribution & Logistics management, Vol. 25, No. 2, 1995, pp. 20-38.
[9]A. I. Barros, R. Dekker and V. Scholten, "A two-level network for recycling sand: a case study," European Journal of Operational Research, Vol. 110, No.2 , 1998, pp. 199-214.
[10]M. Fleischmann, J. Ruwaard, R. Dekker, E. Laan, J. Nunen and L. Wassenhove, "Quantitative models for reverse logistics: a review," European Journal of Operational Research, Vol. 103, No 1, 1997, pp. 1-17.
[11]J. R. Stock,"The Development and Implementation of Reverse Logistics Programs," Council of Logistics Management , Oak Brook, IL.
[12]L. R. Jeffrey and B. R. Dan, "Interactive solutions for the linear multi-objective transportation problem,". 7 May 2004.
[13]J. Current and M. Marsh, "Multiobjective transportation network design and routing problems:Taxonomy and annotation," European Journal of Operational Research, Vol. 65 , No. 1, 1993, pp. 4-19.
[14]J. Gottlieb and L. Paulmann, "Genetic lgorithms for the fixed harge ransportation roblem," Proc. of IEEE International Conference on Evolutionary Computation, 1998, pp. 330-335.
[15]M Gen, Member, Li Yinzhen, Nonmember and K. da,"Solving Multi-Objective Transportation Problem by Spanning Tree-Based Genetic Algorithm" Ieice Trans. Fundamentals, Vol. E82-A, No. 12 ,1999.
[16]A.K. Bit, M.P. Biswal, S.S. Alam, "Fuzzy programming approach to multicriteria decision making transportation problem, " Fuzzy Sets and Systems, Vol. 50, No.2, 1992, pp. 135-141.
[17]S. Elhedhli and O. Benli, "Optimal lot sizing under carload discount schedules,"
INFOR, Vol. 43, No. 4, 2005, pp. 361-370.
[18]W. C. Benton and S. Park, "A classification of literature on determining the lot size under quantity discounts," European Journal of Operational Research, Vol. 92, No. 2, 1996, pp. 219-238.
[19]Q. Wang, Y Chay and Z. Wu, "Streamlining inventory flows with time discounts to improve the profits of a decentralized supply chain,"Int. J. Production Economics, Vol. 132, No. 2, 2011, pp. 230-239.
[20]M. Tadahiko, I Hisao and T. Hideo, "Multi-Objective Genetic Algorithm And Its Applications To Flow Shop Scheduling," Computers ind. Engng Vol. 30, No. 4, 1996, pp. 957-968.
[21]K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A Fast and
Elitist Multiobjective Genetic Algorithm: NSGA-II," IEEE Transactions
on Evolutionary Computation, Vol. 6, No. 2, 2002, pp. 182-197.
[22]T. P. Gregorio and S. L. Maximino, "Handling Multiple Objectives With Particle Swarm Optimization," Vol. 8, NO. 3, 2004, pp. 256-279.
[23]M. S Pishvaee, R. Z Farahani and W. Dullaert, "A memetic algorithm for bi-objective integrated forward/reverse logistics network design, " Computers & Operations Research, Vol. 37, No. 6, 2011, pp. 1100-1112
[24]F Altiparmak, G. Mitsuo, L. Lin and I. Karaoglan, "A steady-state genetic algorithm for multi-product supply chain network design," Computers & Industrial Engineering, Vol. 56, No. 2, 2009, pp 521-537.
[25]B. K. Lee, K. H. Kang and Y. H. Lee, "Decomposition heuristic to minimize total cost in a multi-level supply chain network," Computers & Industrial Engineering, Vol. 54, No. 4, 2008, pp. 945-959.
[26]E. Sim, S. Jung, H. Kim and J. Park, "A Generic Network Design for a Closed-Loop Supply Chain Using Genetic Algorithm," Department of Industrial Engineering, Seoul National University,San 56-1, Shillim-Dong, Kwanak-Gu, Seoul, pp 151-742
[27]H. M. Bidhandi, R. M. Yusuff, M. M. H. M. Ahmad and M. R. A. Bakar, "Development of a new approach for deterministic supply chain network design," European Journal of Operational Research, Vol. 198, No. 1, 2009, pp. 121-128.
[28]Y. C. Valdes, A. Alvarez, D. Ozdemir, "A bi-objective supply chain design problem with uncertainty," Transportation Research Part C: Emerging Technologies, Vol. 19, No. 5, 2011, pp. 821-832.
[29]H.S. Wang, "A two-phase ant colony algorithm for multi-echelon defective
supply chain network design," European Journal of Operational Research, Vol. 192, No. 1, 2009, pp 243-252.
[30]C.L Chen and W.C. Lee, "Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices," Computers and Chemical Engineering, Vol. 28, No.6-7, 2004, pp 1131-1144.
[31]A. D. Yimer and K. Demirli, "A genetic approach to two-phase optimization of dynamic supply chain scheduling," Computers & Industrial Engineering Vol. 58, No. 3, 2010, pp 411-422.
[32]T. Paksoy, C.T. Chang, "Revised multi-choice goal programming or multi-period, multi-stage inventory controlled supply chain model with popup stores in Guerrilla marketing,” Applied Mathematical Modelling Vol. 34,No. 11, 2010, pp. 586-3598.
[33]U. R. Tuzkaya and S. Onut, "A holonic approach based integration methodology for transportation and warehousing functions of the supply network," Computers & Industrial Engineering, Vol. 56, No. 2, 2009, pp. 708-723.
[34]S.A. Torabia and E. Hassini, "An interactive possibilistic programming approach for multiple objective supply chain master planning," Fuzzy Sets and Systems, Vol. 159,No. 2, 2008, pp. 193-214.
[35]T.F. Liang and H.W. Cheng, "Application of fuzzy sets to manufacturing distribution planning decisions with multi-product and multi-time period in supply chains," Expert Systems with Applications, Vol. 36, No. 2, 2009, pp. 3367-3377.
[36]E. Roghanian, S.J. Sadjadi, M.B. Aryanezhad, "A probabilistic bi-level linear multi-objective programming problem to supply chain planning," Applied Mathematics and Computation, Vol. 188, No.1, 2007, pp. 786-800.
[37]R. A. Aliev, B. Fazlollahi, B.G. Guirimov and R. R. Aliev, "Fuzzy-genetic approach to aggregate production–distribution planning in supply chain management," Information Sciences, Vol. 177, No. 20, 2007, pp. 4241-4255.
[38]E. P. Lopez, B. E. Ydstie and I. E. Grossmann, "A model predictive control strategy for supply chain optimization," Computers and Chemical Engineering, Vol. 27, No. 8-9, 2003, pp. 1201-1218.
[39]R. Z. Farahani and M. Elahipanah, "A genetic algorithm to optimize the total cost and service level for just-in-time distribution in a supply chain," Int. J. Production Economics, Vol. 111, No. 2, 2008, pp. 229-243.
[40]A. T. Gumus, A. F. Guneri and S. Keles, "Supply chain network design using an integrated neuro-fuzzy and MILP approach: A comparative design study," Expert Systems with Applications, Vol. 36, No. 10, 2009, pp. 12570-12577.
[41]M. S. Pishvaee, M. Rabbani and S. A. Torabi, "A robust optimization approach to closed-loop supply chain network design under uncertainty," Applied Mathematical Modelling, Vol. 35,No 2, 2011, pp. 637-649.
[42]M.E. Sayed,N. Afia and A. Kharbotly, "A stochastic model for forward–reverse logistics network design under risk," Computers & Industrial Engineering, Vol. 58,No. 3, 2010, pp. 423-431.
[43]E. Zitzler, K. Deb and L. Thiele, "Comparison of multiobjective evolutionary algorithms: empirical results," Evolutionary computation, Vol. 8, No. 2, 2000, pp. 173-195.
[44]J. D. Schaffer, "Multiple objective optimization with vector evaluated genetic algorithms," Proceedings of the First International Conference on Genetic Algorithms, Pittsburgh, 1985, pp. 93-100.
[45]N. Srinivas and K. Deb, "Multiobjective optimization using nondominated sorting in genetic algorithms,"Evolutionary Computation, Vol. 2, No. 3, 1994, pp. 221-248.
[46]Coello and Lechunga, "Multi-objective particle swarm optimization methods"
[47]J.J. Durillo, J.N. Garcia, C.A. Coello, F. Luna and E. Alba "Smpso: A new pso-based metaheuristic for multi-objective optimization" 2009-April 2 2009
[48]M. K. Tiwari, N. Raghavendra and S. K. Shubham, "A Hybrid Taguchi–Immune approach to optimize an integrated supply chain," European Journal of Operational Research, Vol. 203, No. 1, 2010, pp. 95-106.
[49]M.T. Melo, S. Nickel and F. S.D. Gama. "Facility location and supply chain management—a review," European Journal of Operational Research, Vol. 196, No. 2, 2009, pp. 401-412.
[50]A. Toptal, "Replenishment decisions under an all-units discount schedule and stepwise freight costs," European Journal of Operational Research, Vol. 198, No. 2, 2009, pp. 504-510.
[51]Y. C. Tsao and J. C. Lu, "A supply chain network design onsidering transportation cost discounts," Transportation Research Part E, Vol. 48, No. 2, 2012, pp. 401-414.
[52]R. S. Kadadevaramath, J. C. Chen, B. L. Shankar and K. Rameshkumar, "Application of particle swarm intelligence algorithms in supply chain network architecture optimization," Expert Systems with Applications, Vol. 39, No. 11, 2012, pp. 10160-10176.
[53]H. Li and DaliJiang, "New model and heuristics for safety stock placement in general acyclic supply chain networks," Computers & Operations Research, Vol. 39, No.7 , 2012, pp. 1333-1344.
[54]C. F. Cheung, C. M. Cheung and S. K. Kwok, "A Knowledge-based Customization System for Supply Chain Integration," Expert Systems with Applications, Vol. 39, No. 4, 2012, pp. 3906-3924.
[55]R. Dondo, C. A. Mendez and J. Cerda, "The multi-echelon vehicle routing problem with cross docking in supply chain management," Computers and Chemical Engineering, Vol. 35, No. 12, 2011, pp. 3002-3024.
[56]S. M. A. Zavardehi, M. H. Keshteli, R. and T. Moghaddam, "Solving a capacitated fixed-charge transportation problem by artificial immune and genetic algorithms with a Prufer number representation, " Expert Systems with Applications, Vol. 38, No. 8, 2011, pp. 10462-10474.
[57]M. K. Tiwari, N. Raghavendra, S. Agrawal and S. K. Goyal, "A ybrid aguchi-Immune approach to optimize an integrated supply chain esign problem with multiple shipping," European Journal of Operational Research, Vol. 203, No. 1, 2010, pp. 95-106.
[58]Z. Gao, Tang and L, A, "Multi-Objective Model for Purchasing of Bulk Raw Materials of a Large-Scale Integrated Steel Plant," International Journal of Production Economics, Vol. 83, 2003, pp 325-334.
[59]A.K. Gupta and A.I. Sivakumar, "Simulation Based Multiobjective Schedule Optimization in Semiconductor Manufacturing. Proceeding of the Winter Simulation Conference, E. Yücesan, C.-H. Chen, J.L. Snowdon, and J.M. Charnes, eds, 2002, pp 1862-1870.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top