跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉家瑋
研究生(外文):Chia-Wei Liu
論文名稱:模糊多目標階段式預算分配專案管理決策模式
論文名稱(外文):Fuzzy Multi-objective and Stage-type Budget Allocation of Project Management Decision-making Model
指導教授:林志平林志平引用關係王明展王明展引用關係
指導教授(外文):Chih-Ping LinMing-Jaan Wang
口試委員:楊明峰
口試委員(外文):Ming-Feng Yang
口試日期:2012-06-15
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:工業工程與管理系碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:86
中文關鍵詞:模糊多目標線性規劃階段型預算分配現值
外文關鍵詞:Fuzzy multi-objective linear programmingStage-type budget allocationPresent value
相關次數:
  • 被引用被引用:6
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究應用可能性線性規劃於專案管理多目標決策問題,包括總專案成本、總完工時程及總趕工成本三項極小化目標。建構模式其首要考量在於現實生活中掌握的資訊不夠完整,無法收集充足的資料以決定各種狀況發生的機率,在決定各項任務期望成本與時間上遇到艱巨的麻煩;本研究便根據此問題,提出模糊理論應用在可能性預估上,利用三角模糊分配將這些參數資料模式化;其次,由於經濟通貨膨脹的影響力,估算專案內各項任務成本將考慮貨幣時間價值,透過現金流量貼現法分析現金流量,並根據分析結果決定階段式分配預算方式。最後,兩階段法依序運用極大極小算子與加權因子分析模式求解此模糊多目標階段式預算分配專案管理決策模式,其隸屬函數產生極大隸屬值將提供專案經理針對此複雜之問題選擇合適的方案,以便決定能否在需求時間、有限資金及可利用資源內完成,並在多個衝突目標取得妥協之下,使專案經理獲得較佳的整體滿意度。

In this study, the possibility of linear programming in multi-objective project management decisions, including the total project cost, total completion time and total crash cost of three minimization objectives. Its top priority is not enough information to grasp of building model in real life, so unable to collect and determine the incidence of various conditions. Therefore, formulating these expect cost and time will be difficult problems encountered. This research applied fuzzy theory to estimate the probability on above problem. First using triangular fuzzy distribution to model these parameters’ data; Second, because the impact of economic inflation, the estimated cost of the project must consider all the tasks within currency time value, and through discounted cash flow to analysis present value. In addition, decision-making the stage budget how to allocate based on results of the analysis. Finally, the two-phase approach using the sequence that the max-min operator and the weighted factor analysis model to solve the fuzzy multi-objective stage budget allocation of project management decision-making. Its greatly membership value will provide the project management to decision for this complex problem to select the appropriate alternative in order to determine whether the time of demand, limited funds and resources available to complete. In other words, this work is that obtain a better overall satisfaction of project management under the compromise of conflicting goals.

CONTENT

摘要 i
ABSTRACT ii
致謝 iv
CONTENT v
LIST OF TABLES viii
LIST OF FIGURES ix
Chapter 1 INTRODUCTION 1
1.1 Research Background and Motivation 1
1.2 Research Objectives 3
1.3 Research Scope and Limitation 4
1.4 Research Process 5
Chapter 2 LITERATURE REVIEW 8
2.1 The Development of Project Management 8
2.1.1 Definition 8
2.1.2 Project Network Diagram 11
2.2 Fuzzy Decision Making Approach 12
2.2.1 Stochastic Programming Techniques 12
2.2.2 Fuzzy Single-Objective Linear Programming 13
2.2.3 Fuzzy Multi-Objective Linear Programming 13
2.2.4 Possibility theory 14
2.3 Stage-type Time Value of Money 14
2.4 Two-Phase Approach 17
Chapter 3 PROBLEM AND SOLUTION METHODOLOGY 21
3.1 Problem Description, Assumption and Notation 21
3.2 Model Development 24
3.2.1 Objective Functions 25
3.2.2 Constraints 26
3.2.3 Fuzzy Parameter Data 27
3.3 Two-Phase Method 30
3.3.1 Region Search Method 30
3.3.2 Signed Distance Method 33
3.3.3 First Phase 36
3.3.4 Second Phase 45
3.4 Interactive Satisfactory Method 46
3.4.1 Modification of the Membership Functions 47
3.4.2 Interactive Two-phase Approach of the Procedure 50
Chapter 4 NUMERICAL EXAMPLE AND ANALYSIS 53
4.1 Numerical Example 1 53
4.1.1 Data Description for Numerical Example 1 53
4.1.2 Models comparison and analysis 64
4.2 Numerical Example 2 66
4.2.1 Data Description for Numerical Example 2 66
4.2.2 Computational Analysis 77
Chapter 5 CONCLUSIONS AND FUTURE RESEARCH 80
5.1 Conclusions 81
5.2 Future Research 82
REFERENCES 83

LIST OF TABLES

Table2.1 The definition of PMDM 9
Table2.2 Evolution of mathematical programming techniques in PMDM 10
Table2.3 The relevant parameters of present value analysis 16
Table3.1 The initial solution by region research method 35
Table4.1 Summarized data for the numerical example 1 55
Table4.2 The corresponding PIS and NIS of cost table 58
Table4.3 Initial and improved PM plans for the Daya case 61
Table4.4 Sensitivity analysis on the total completion time 62
Table4.5 Modification of membership functions for the example1 63
Table4.6 Solutions comparison for numerical example 1 65
Table4.7 Summarized data for the numerical example 2 67
Table4.8 The corresponding PIS and NIS of cost table 71
Table4.9 Initial and improved PM plans for the Deporter & Kimberly case [9] 74
Table4.10 Sensitivity analysis on the total completion time 75
Table4.11 Modification of membership functions for the example 2 76
Table4.12 The PIS and NIS for objective functions of PLP method 77
Table4.13 Solutions comparison for numerical example 2 78

LIST OF FIGURES

Figure1.1 Balance each project goals of plan 4
Figure1.2 Research process 7
Figure2.1 Statement of cash flow (in the perspective of decision makers) 17
Figure2.2 Schematic diagram of two-phase method 20
Figure3.1 Triangular fuzzy distribution 28
Figure3.2 Region search method of Z1 31
Figure3.3 Region search method of Z3 32
Figure3.4 Triangular fuzzy distribution (right hand side) 37
Figure3.5 Triangular fuzzy distribution (left hand side) 38
Figure3.6 The fuzzy membership function of Z11 (Z13) 39
Figure3.7 The fuzzy membership function of Z12 40
Figure3.8 The fuzzy membership function of Z2 41
Figure3.9 The fuzzy membership function of Z31 (Z33) 43
Figure3.10 The fuzzy membership function of Z32 43
Figure3.11 The modified strategy 1 for minimize the imprecise range 48
Figure3.12 The modified strategy 2 for minimize the imprecise range 49
Figure3.13 Interactive two-phase approach of the procedure 52
Figure4.1 The project network of the Daya Technology Corporation 54
Figure4.2 Cost and completion time of the corresponding line chart 62
Figure4.3 The project network of the numerical example 2 67
Figure4.4 Cost and completion time of the corresponding line chart 75
Figure4.5 The triangular distribution of the total project cost 79



REFERENCES

[1]A. Jaafari and K. Manivong, "Towards a smart project management information system," International Journal of project management," vol. 16, no. 4, 1998, pp. 249-265.
[2]A. K. Munns and B. F. Bjeirmi, "The role of project management in achieving project success," International Journal of Project Management, vol. 14, no. 2, 1996, pp. 81-87.
[3]A. Kastor and K. Sirakoulis, "The effectiveness of resource levelling tools for Resource Constraint Project Scheduling Problem," International Journal of Project Management, vol. 27, no. 5, 2009, pp. 493-500.
[4]C. F. Hu, Y. L. Shen and S. Y. Li, "An interactive satisficing method based on alternative tolerance for fuzzy multiple objective optimization," Applied Mathematical Modeling, vol. 33, no. 4, 2009, pp.1886-1893.
[5]C. S. McCahon and E. S. Lee, "Project network analysis with fuzzy activity times," Computers & Mathematics with Applications, vol. 15, no. 10, 1988, pp. 829-838.
[6]C. T. Chen and S. F. Huang, "Order-fulfillment ability analysis in the supplychain system with fuzzy operation times," International Journal of Production Economics, vol. 101, no. 1, 2006, pp. 185-193.
[7]D. Dubois and H. Prade, Possibility theory: an approach to computerized processing of uncertainty, New York: Plenum Press, 1988.
[8]D. G. Malcolm, J. E. Roseboom, C. E. Clark and W. Fazar, "Application of technique for research and development program evaluation," Operations Research, vol. 7, 1959, pp. 646-669.
[9]E. L. DePorter and K. P. Ellis, "Optimization of project networks with goal programming and fuzzy linear programming," Computers and Industrial Engineering, vol. 19, no. 4, 1990, pp. 500-504.
[10]F. Arikan and Z. Gungor, "An application of fuzzy goal programming to a multiobjective project network problem," Fuzzy Sets and Systems, vol. 119, no. 1, 2001, pp. 49-85.
[11]G. B. Turan, "Modeling the stochastic behavior of short-term interest rate: Pricing implications for discound bonds," Journal of Banking & Finance, vol. 27, no. 2, 2003, pp. 201-228.
[12]H. J. Zimmermann, "Fuzzy programming and linear programming with several objective functions," Fuzzy Sets and Systems, vol. 1, no. 1, 1978, pp. 45-55.
[13]J. J. Buckley, "Possibilistic linear programming with triangular fuzzy numbers," Fuzzy Sets and Systems, vol. 26, no. 1, 1988, pp.135-138.
[14]J. J. Buckley, "Stochastic versus possibilistic programming," Fuzzy Sets and Systems, 1990, pp. 43-59.
[15]J. S. Yao and K. Wu, "Ranking fuzzy numbers based on decomposition principle and signed distance," Fuzzy Sets and Systems 116, 2000, pp.275-288.
[16]K. Cori, "Fundamentals of master scheduling for the project manger," Project Management and Journal, vol. 16, no. 2, 1985, pp. 78-89.
[17]K. D. Jayanta, K. M. Shyamal and M. Manoranjan, "Two storage inventory problem with dynamic demand and interval valued lead-time over finite time horizon under inflation and time-value of money," European Journal of Operational Research, vol. 185, no. 1, 2008, pp. 170-194.
[18]K. M. Mjelde, "Fuzzy resource allocation," Fuzzy Sets and Systems, vol. 19, no. 3, 1986, pp. 239-250.
[19]L. A. Zadeh, "Fuzzy sets as a basis for a theory of possibility," Fuzzy Sets and Systems, vol. 1, no. 1, 1978, pp. 3-28.
[20]M. Whelton, G. Ballard and I. D. Tommelein, "A knowledge management framework for project definition," IT con 7, 2002, pp.197-212.
[21]R. C. Wang and T. F. Liang, "Application of multiple fuzzy goals programming to project management decisions," International Journal of Industrial Engineering–Theory, Applications, and Practice, vol. 13, no. 2, 2006, pp. 219-228.
[22]R. E. Bellman and L. A. Zadeh, "Decision-making in a fuzzy environment," Management Science, vol. 17, no. 4, 1970, pp. 141-164.
[23]R. P. Bey, R. H. Doersch and J. H. Patterson, "The net present value criterion: its impact on project scheduling," Project Management Quarterly, vol.12, no. 2, 1981, pp. 35-45.
[24]S. Karshenas and D. Haber, "Economic optimization of construction project scheduling," Construction Management and Economics, vol. 8, no. 2, 1990, pp. 135-146.
[25]S. Lee and R. J. Li, "Fuzzy multiple objective programming and compromise programming with Pareto optimum," Fuzzy Sets and Systems, vol. 53, no. 3, 1993, pp. 275-288.
[26]S. M. Guua and Y. K. Wu, "Two-phase approach for solving the fuzzy linear programming problems," Fuzzy Sets and Systems, vol. 107, no. 2, 1999, pp. 191-195.
[27]S. S. Leu, A. T. Chen and C. H. Yang, "A GA-based fuzzy optimal model for construction time–cost trade-off," International Journal of Project Management, vol. 19, no. 1, 2001, pp. 47-58.
[28]T. F. Liang, "Application of fuzzy sets to manufacturing/distribution planning decision in supply chains," Information Sciences, vol. 181, no. 4, 2011, pp. 842-854.
[29]T. F. Liang, "Application of fuzzy sets to multi-objective project management decisions," International Journal of General Systems, vol. 38, no. 3, 2009, 311-330.
[30]T. F. Liang, C. F. Lin, K. Y. Lin, P. L. Li, M. C. Hsiao and J. L. Wu, "Project Management Decisions with Multiple Goals Using Possibilistic Linear Programming," NSC93-2218-E-164-006, Taiwan, 2006, pp. 1-7.
[31]W. J. Parks and K. D. Ramsing, "The use of the compound Poisson in PERT," Management Science, vol. 15, no. 8, 1969, pp. 397-402.
[32]X. Li and B. Li, "Computing efficient solutions to fuzzy multiple objective linear programming problems," Fuzzy Sets and Systems, vol. 157, no. 10, 2006, pp. 1328-1332.
[33]Y. J. Lai and C. L. Hwang, "A new approach to some possibilistic linear programming problems," Fuzzy Sets and Systems, vol. 49, no. 2, 1992, pp. 121-133.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top