跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/06 08:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉柔君
研究生(外文):Rou-Jun Ye
論文名稱:建構一混合模式應用於塑膠射出成型產品方案排序
論文名稱(外文):Developing a Hybrid Model for Alternatives Ranking of Plastic Injection Molded Products
指導教授:車振華車振華引用關係
口試委員:江梓安王河星
口試日期:2012-06-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:工業工程與管理系碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:47
中文關鍵詞:塑膠射出成型Pearson相關係數倒傳遞類神經網路視覺化決策模型
外文關鍵詞:Plastic injection moldingPearson Product-Moment CorrelationBack-Propagation Neural Network (BPNN)Decision Ball Models
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於近年來溫室效應及能源資源短缺逐漸受到重視,加上全球產業環境快速的變化以及產品生命週期不斷的縮短之下,塑膠射出成型產品變化非常頻繁,企業必須不斷推出新產品來符合目前以及未來即將形成的消費市場,來獲取利潤與競爭地位。因此,本研究運用倒傳遞類神經網路解決塑膠射出成型產業之新產品成本、含碳量及回收率/再利用率預測問題,研究中先運用皮爾遜績差相關(Pearson Product-Moment Correlation)又稱Pearson相關係數找出原始資料變數之關聯性並決定類神經網路最佳預測之模型,精確預測塑膠射出成型產業的產品成本、含碳量及回收值,期望適時提供企業正確迅速的資訊。此外,為了瞭解新產品方案之績效評估,因此,本研究運用視覺化決策模型(Spherical Decision Model )又稱決策球模型(Decision Ball Models)發展新產品的績效評估模式。透過上述之分析,希望可以協助企業評選出兼具環保考量與經濟價值的產品。

In recent years, the energy resources shortage and the effect of greenhouse is paid attention gradually. Injection plastic products are subjects to frequent variability due to the environment is fast changed, and the products life cycle is constantly short for the global industry. The enterprises must provide the new products to fulfill the present and future consumer market constantly, to obtain profits and competitiveness.
For this reason, the study focuses on the neural network to solve the problem concerned with cost, carbon content and recycling estimation for new products for the plastic injection molding industry. First, the study the Pearson Product-Moment Correlation was used to solve the problem concerned with to find the relatedness of Original variable data in order find the optimum forecast model of neural network. The utilization of optimum forecast model of neural network was aimed at precise estimation of production cost, carbon content and recycling / reuse for plastic injection molding, expected to timely provide quickly correct information for the business.
Second, in order to understand the new product''s performance evaluation program, this study focuses on the Decision Ball Models to develop the performance evaluation model for the new product. With the analysis provided above, We expect to help enterprises to select the appropriate product which can fulfill the green environmental protection and economic benefits simultaneously.


摘 要.................................................... i
ABSTRACT..................................................ii
誌 謝....................................................iv
目錄.......................................................v
表目錄....................................................vi
圖目錄...................................................vii
第一章 緒論.............................................1
1.1 研究背景與動機.........................................1
1.2 研究目的...............................................2
1.3 研究架構........................................3
第二章 文獻探討.................................4
2.1塑膠射出成型........................................4
2.2新產品方案評選(塑膠射出成型產品方案評選)..........7
2.3生態環境考量.................................9
2.4皮爾森績差相關.................................9
2.5 倒傳遞類神經網路..........................11
2.5.1 倒傳遞類神經網路之介....................11
2.5.2 倒傳遞類神經網路應用於成本估...............14
2.6 視覺化決策型.................14
2.6.1 視覺化決策模式之義......................15
2.6.2 視覺化決策模式之勢......................16
2.6.3 視覺化決策模式應用於績效估............17
2.7 塑膠射出成型成本析.....................17
2.8塑膠射出成型碳排放量估...................19
2.9 塑膠射出成型回收值估..................21
第三章 研究方法.........................22
3.1問題描述與義.......................22
3.2研究構...........................23
第四章 塑膠射出成型產品最佳方案評估方法論..........25
4.1建置類神經網路預測式.................25
4.2建置視覺化決策式...................26
第五章 案例研究.....................32
5.1 模式分析與比較.....................40
第六章 結論與建議.................42
參考文獻.......................................43


[1]林震岩,多變量分析:SPSS的操作與應用,台北:智勝文化事業有限公司,2007,第217-235頁。
[2]葉怡成,類神經網路模式應用與操作,台北:儒林書局,2001,第4-2-4-36頁。
[3]徐佳莉,「汽車塑膠零件的綠色契機」,華控月刊,第46期,2006,第20-25頁。
[4]葉芷嫻,「產品碳足跡實踐綠色承諾」,工業技術研究院,第228期,2010。
[5]林志清,塑膠產業發展趨勢,財團法人塑膠工業技術發展中心,2010,第1-100頁。
[6]張又生,RC建築物生命週期環境負荷評估-以耗能源與溫室氣體排放量解析,碩士論文,國立成功大學建築學系碩博士班,台南,1997。
[7]陳建治,亞洲商學院之排序與分群,碩士論文,國立交通大學資訊管理研究所碩士班,新竹,2005。
[8]H. Abe and S. Tusmoto, Analyzing Behavior of objective Rule Evaluation Indices Based on Pearson Product-Moment correlation coefficient, Ph.D. Thesis, Shimane University , Izumo Shimane, 2008, pp. 84-89.
[9]S. M. Al-Salem, Lettieri, P. Baeyens, “Recycling and recovery routes of plastics solid waste (PSW): A review,”Waste Management, vol. 29, 2009, pp. 2625-2643.
[10]Z. Ayag and R. G. Ozdemir, “A hybrid approach to concept selection through fuzzy analytic network process,” Computers and Industrial Engineering, vol 56, no.1, 2009, pp. 368-379.
[11]S. M. Brenner, “Practical R&D Project Prioritization,” Research Technology Management , vol. 137, no. 5, 1994 , pp. 38.
[12]B. Jürgen, “Neural networks for cost estimation:Simulations and Pilot application,” International Journal of Production Research, vol. 38, no. 6, 2000 pp. 1231-1254.
[13]Y. C. Chao, Life Cycle Assessment on Carbon Dioxide Emission of the Interior Decoration of Department Stores, Ph.D. Thesis, National Cheng Kung University, Tainan, 2004.
[14]M. Cavalieri, “Parametric vs. neural network models for estimation for production costs,” International Journal of Production Economics, vol. 91, no.2, 2004, pp. 165-177.
[15]D. Duval and H. L. MacLean, “The role of product information in automotive plastics recycling: a financial and life cycle assessment,” Journal of Cleaner Production, vol. 115, 2007, pp. 1158-1168.
[16]H. Eilat, B. Golany and A. Sntub, “Constructing and evaluating balanced portfolios of R&D projects with interactions: ADEA based methodology,” European Journal of Operational Research, vol. 172, 2006, pp. 1018-1039.
[17]B. Feng, J. Ma and Z. P. Fan, “An integrated method for collaborative R&D project selection: Supporting innovative research teams,” Expert System with Application, vol. 38, 2011, pp. 5532-5543.
[18]K. Fang, N. Uhan, F. Zhao and J.W. Sutherland, “A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction,” Journal of Manufacturing System, vol. 30, 2011, pp.234-240.
[19]X. B. Li and G. R. Reeves, “A multiple criteria approach to data envelopment analysis,” European Journal of Operational Research, vol. 115, 1999, pp. 507-517.
[20]J. Fiksel, Design for Environment:Creating Eco-efficient Products and Processes, New York:McGraw-Hill, 1996.
[21]S. Ghorbani and M. Rabbani, “A new multi-objective algorithm for project selection problem,” Advances in Engineering Software, vol. 140, no.1, 2009, pp. 9-14.
[22]B. Glazebrook, R. Coulon and C. Abrassart, “Towards a product life cycle design tool,” Proceedings of the IEEE International Symposium on Electronics and the Environment, San Francisco, CA, 2000, pp. 81-85.
[23]D. Javad, “Best project selection by using of Group TOPSIS method ,”International Association of Computer Science and Information Technology-Spring Conference, IACSIT-SC, Singapore, 2009.
[24]S. C. Lin, The Influence of Interpersonal and Impact Competency on Team-Leadership Effectiveness, Ph.D. Thesis, Chaoyang University of Technology, Taichung, 2005.
[25]Y. F. Li, M. Xie and T. N. Goh, “A study of project selection and feature weighting for analogy based on software cost estimation,” Journal of System and Software, vol. 82, no.2 , 2009, pp.241-252.
[26]H. L. Li and L. C. Ma, “Visualizing decision process on spheres based on the even swap concept,” Decision Support System, vol. 45, 2008, pp, 354-367.
[27]H. L. Li, L. C. Ma and Y. S. Huang, “Ranking and Grouping Decision Alternatives by using Gower Plots and Decision Balls,” Journal of Chinese Institute of Industrial Engineers, vol. 21, no. 2, 2004, pp.113-120.
[28]C. L. Liu and T. Y. Yang, “Study on Method of the GPS Height Fitting Artificial Neural Network,”Journal of Southwest Jiaotong University, vol. 42, no. 2, 2007, pp. 148-152.
[29]S. Kumar, Neural Networks, New York:McGraw-Hill, 2005, pp. 186-193.
[30]R. A. Malloy, Plastic Part Design for Injection Molding:An Introduction, New York:Hanser Gardner Publications. Inc. 1994.
[31]H. G. Murat, S. Z. Dögan, “A neural networks approach for early cost estimation of structural system of buildings,” International Journal of Project Management , vol. 22, 2004, pp. 595-602.
[32]L. C. Ma, Decision Ball Models:Methods and Application, Ph.D. Thesis, National Chiao Tung University, Taipei, 2006.
[33]L. C. Ma, “Visualizing preferences on spheres for group decision based on multiplication preference relation,” European Journal of Operational Research , vol. 203, 2010, pp. 176-184.
[34]L. C. Ma, “Using Gower Plot and Decision Ball to rank alternatives involving inconsistent preferences,” Decision Support System, vol. 51, 2011, pp. 712-719.
[35]T. Phillips, C. G. Dickey and T. Ramki, “Using Transitivity to Increase the Accuracy of Sample-Based Pearson Correlation Coefficients,” University Of Denver Department of Computer Science, USA, 2010.
[36]J. Parfitt , “Analysis of household waste composition and factors driving waste increases,”WRAP for strategy unit. Government Cabinent Office, London, UK, 2002.
[37]Y. T. Tan, L. Y. Shen, C. Langston and Y. Liu, “Construction projection selection using fuzzy TOPSIS approach,” Journal of Modeling in Management, vol. 5, no.3, 2010, pp. 302-315.
[38]J. Scheirs, Polymer Recycling: Science, Technology and Application, first ed., Chichester:Wiley-Blackwell, 1998.
[39]T. Wiedmann and J. Minx, A Definition of Carbon Footprint. In:C.C. Pertsora, Ecological Economics Research Trends:Chapter 1, Nova Science Publishers, Hauppauge NY USA, 2008, pp. 1-11.
[40]J. M. Yarwood and P. D. Eagan, Design for the Environment- A Competitive Edge for the future, Madison:MN Office of Environmental Assistance, 1998. pp. 6-9.
[41]C. W. Yen, Plastic molding design and mechanical design, Taipei:OpenTech, 1996, pp. 35-99.
[42]D. H. Yang, G. W. Ma, Q. F. Liu, C. H. Tao and X. M. Guo, “ Runoff Prediction by BP Networks Model Based on PSO,” Journal of Hydroelectric Engineering vol. 25, no. 2 , 2006, pp. 65-68.
[43]A. Ziebik and W. Stanek, “Forecasting of the energy effects of injecting plastics wastes into the blast furnace in comparison with other auxiliary fuels,”Energy, vol. 26, 2001, pp. 1159-1173.
[44]R. Y. Zhang, Plastic injection molding design (I)(II)(III), Taipei:GauLihBookCo, 1995, pp. 135-160.
[45]G. Zhou, Z. Yong and X.Y. Guo, “Cost Estimation of Injection Molded Part in Concurrent Design,” China Plastics Industry, vol. 35, no. 7, 2007, pp 35-38.
[46]Y. F. Zhang and J. Y. H. Fuh, “A neural networks approach for early cost estimation of packaging products,” Computers & Industrial Engineering, vol. 34, no. 2, 1998, pp. 433-450.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top