跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林品妍
研究生(外文):Pin-yan Lin
論文名稱:以光沉積法製備奈米金觸媒在一氧化碳催化反應之研究
論文名稱(外文):A study of CO oxidation on gold nanocatalysts prepared by photo-deposition method
指導教授:楊重光楊重光引用關係
指導教授(外文):Chung-Kuang Yang
口試委員:曾子峯劉懷德
口試委員(外文):Zih-Fong TsengHuai-De Liu
口試日期:2012-01-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:92
中文關鍵詞:二氧化鈦奈米金觸媒一氧化碳實驗設計法
外文關鍵詞:Titanium DioxideGold nanoparticle catalystCarbon monoxideExperiment designs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以光沉積法製備奈米金觸媒,並探討不同的照光形式及溶液酸鹼值,對所合成金觸媒之一氧化碳催化影響。
本研究係利用四氯金酸作為金的前驅物,二氧化鈦(P25)作為觸媒載體。此外,本實驗以LED燈為光源,並搭配可調頻控制器與監控示波器,自製一套光還原合成系統。實驗規劃係利用實驗設計法搭配變異數分析(Analysis of Variance, ANOVA)進行實驗規劃與探討,主要分析因子有照光頻率、照光工作週期、照光時間和前驅物溶液pH值。再者,所合成之觸媒利用相關儀器進一步物性與化性分析。以X-射線繞射儀(X-ray Diffraction,XRD)進行觸媒材料成分分析;以X-光螢光分析儀(X-ray Fluorescence Spectrometer,XRF)進行元素定性和半定量分析;以穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)來觀察觸媒微粒子形貌、粒徑大小與分佈;透過電子能譜化學分析儀 ( Electron Spectroscopy for Chemical Analysis,ESCA)分析金觸媒樣品之化學態;原位傅立葉散射-反射紅外光譜技術 ( in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy,in situ DRIFTS) 監控金觸媒表面與一氧化碳或二氧化碳氣體分子的反應情形,藉以觀察氣體分子於觸媒表面之吸、脫附反應行為;以氣相層析儀( Gas Chromatography,GC) 偵測不同溫度下,一氧化碳轉化成二氧化碳之轉化率。最後,將上述所得實驗結果進一步分析,推測由光沉積法合成奈米金觸媒之顯著因子,並評估合成奈米金觸媒的最佳合成條件。


In this study, Au/TiO2 was prepared by photo-deposition method for oxidizing CO to CO2. Crystalline structure was identified by X-ray Diffraction (XRD); the elements of the sample were semi-quantified by X-ray Fluorescence Spectrometer (XRF). Morphologies and particle size of the sample were determined by Transmission Electron Microscopy (TEM), and elemental composition and chemical states were characterized by Electron Spectroscopy for Chemical Analysis (ESCA). Finally, gas chromatography (GC) was used to evaluate the CO conversion of catalysts at different temperatures. To examine these catalysts, Fourier transform infrared spectroscopy (FTIR) coupled with diffuse reflectance sampling accessory was used to study the mechanism of CO oxidation over Au/TiO2 at different temperatures. In addition, design of experiment (DOE) accompanied with ANOVA is applied to analyze the significance of the control factors. With the assistant of DOE, the optimization condition of CO oxidation over Au/TiO2 can be predicted by artificial neural network.

摘 要 I
Abstract III
致 謝 IV
目 錄 V
圖 目 錄 VIII
表 目 錄 XII
第一章 緒論 1
1.1 前言 1
1.2光觸媒反應的基本原理 2
1.3光觸媒添加過渡金屬之效應 4
1.4脈衝寬度變調(Pulse Width Modulation,PWM)調光運用 5
1.5研究動機 8
第二章 文獻回顧 9
2.1 金的物理及化學特性 9
2.2 金觸媒簡介 10
2.3 影響奈米金觸媒的因素 14
2.3.1 載體的選擇 14
2.3.2 煅燒程序對於金觸媒的影響 15
2.3.3 載體效應 17
2.3.4 前驅物pH值的影響 19
2.4金觸媒的製備方法 21
2.5 一氧化碳氧化反應 26
2.5.1 氧的吸附形式 26
2.5.2 金觸媒的活性位置 26
2.5.3 一氧化碳氧化反應的機制 29
2.6 實驗設計法 32
第三章 實驗方法及儀器設備 34
3.1 實驗目的 34
3.2 實驗藥品與氣體 34
3.3 實驗步驟 35
3.4 實驗儀器設備 37
3.5觸媒特性鑑定 39
3.5.1 X-射線繞射儀(XRD) 39
3.5.2 X-光螢光分析儀(XRF) 40
3.5.3穿透式電子顯微鏡(TEM) 42
3.5.4電子能譜化學分析儀 (ESCA) 43
3.6 原位傅立葉散射-反射紅外光譜分析 45
3.7 氣相層析儀 (Gas Chromatograph; GC) 48
3.8觸媒活性測試-一氧化碳氧化反應 50
第四章 結果與討論 53
4.1 觸媒特性鑑定 53
4.1.1 X-射線繞射儀(XRD) 53
4.1.2 X-光螢光分析儀(XRF) 56
4.1.3 穿透式電子顯微鏡(TEM) 58
4.1.4 電子能譜化學分析儀 (ESCA) 63
4.1.5 示差掃描熱差儀(DSC) 66
4.2 原位傅立葉散射-反射紅外光譜(DRIFTs)分析 68
4.3觸媒活性測試-一氧化碳氧化反應 71
4.3.1 製程中不同照光型式對於金觸媒活性的影響 72
4.3.2 製程中不同照光時間對於金觸媒活性的影響 73
4.3.3 不同反應溫度對於金觸媒活性的影響 74
4.3.4 反應時外部照光對於金觸媒活性的影響 76
4.4. 實驗設計法 78
第五章 結論 84
第六章 參考文獻 86


1.賀有郛、趙貴蓉, 化工技術, 2003. 第11卷第9期 p. 178-183
2.Haruta, M. and M. Daté, Advances in the catalysis of Au nanoparticles. Applied Catalysis A: General, 2001. 222(1-2): p. 427-437.
3.Greenwood, N.N.a.A.E., Chemistry of the Elements, Pergamon,Oxford, 1984.
4.Bond, G.C. and D.T. Thompson, Catalysis by Gold. Catalysis Reviews - Science and Engineering, 1999. 41(3-4): p. 319-388.
5.Bartlett, N., Relativistic effects and the chemistry of gold. Gold Bulletin, 1998. 31(1): p. 22-25.
6.Lagowski, J.J., ANIONIC GOLD. Gold Bulletin, 1983. 16(1): p. 8-11.
7.Bond, G.C., Gold: A relatively new catalyst. Catalysis Today, 2002. 72(1-2): p. 5-9.
8.Bond, G.C., et al., Hydrogenation over supported gold catalysts. Journal of the Chemical Society, Chemical Communications, 1973(13): p. 444b-445.
9.Huber, H., D. McIntosh, and G.A. Ozin, A metal atom model for the oxidation of carbon monoxide to carbon dioxide. The gold atom-carbon monoxide-dioxygen reaction and the gold atom-carbon dioxide reaction. Inorganic Chemistry, 1977. 16(5): p. 975-979.
10.McIntosh, D. and G.A. Ozin, Direct synthesis using gold atoms. Monodioxygen gold, Au(O2). Inorganic Chemistry, 1976. 15(11): p. 2869-2871.
11.Hutchings, G.J., Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. Journal of Catalysis, 1985. 96(1): p. 292-295.
12.M. Haruta, N.Y., T. Kobayashi, S. Iijima, J. Catal., 1989. 115 p.301
13.Gardner, S.D., et al., Catalytic behavior of noble metal/reducible oxide materials for low-temperature CO oxidation. 1. Comparison of catalyst performance. Langmuir, 1991. 7(10): p. 2135-2139.
14.Sinha, A.K., et al., Vapor-phase epoxidation of propene over Au/Ti-MCM-41 catalysts: Influence of Ti content and Au content. Catalysis Letters, 2003. 85(3-4): p. 223-228.
15.Prati, L. and M. Rossi, Gold on carbon as a new catalyst for selective liquid phase oxidation of diols. Journal of Catalysis, 1998. 176(2): p. 552-560.
16.Corma, A. and P. Serna, Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science, 2006. 313(5785): p. 332-334.
17.Shiju, N.R. and V.V. Guliants, Recent developments in catalysis using nanostructured materials. Applied Catalysis A: General, 2009. 356(1): p. 1-17.
18.Comotti, M., et al., Oxidation of alcohols and sugars using Au/C catalysts: Part 2. Sugars. Applied Catalysis A: General, 2005. 291(1-2): p. 204-209.
19.Prati, L. and F. Porta, Oxidation of alcohols and sugars using Au/C catalysts: Part 1. Alcohols. Applied Catalysis A: General, 2005. 291(1-2): p. 199-203.
20.Soares, J.M.C., Journal of Catalysis, 2003. 219: p. 7–24
21.D.T. Thompson, G.C.B., Catal., Catal. Rev.-Sci Eng., 1999. 41: p. 3–4,319.
22.S. Galvagno, G.P., J. Schwank, J. Catal., 1980. 63: p. 415
23.Haruta, M., et al., Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4. Journal of Catalysis, 1993. 144(1): p. 175-192.
24.M. Haruta, T.K., S. Iijima and F. Delannay,, in: Proc. 9th Int. Congr. on Catalysis, , (1988). v3: p. 1206.
25.Torres Sanchez, R.M., et al., Selective oxidation of CO in hydrogen over gold supported on manganese oxides. Journal of Catalysis, 1997. 168(1): p. 125-127.
26.D.A.H. Cunningham, W.V., H. Kageyama, S. Tsubota, M. Haruta M. J. Kahlich, H. A. Gasteiger, R.J. Behm, , Journal of Catalysis, (1999) v182,(n2,): p. 430-440.
27.Daté, M., et al., Performance of Au/TiO2 catalyst under ambient conditions. Catalysis Today, 2002. 72(1-2): p. 89-94.
28.Haruta, M., Now and Future, , 1992. 7,: p. 13.
29.R. D. Walters, J.J.W., J. E. Smith, Catalysis Letters, 1995. v30: p. 181.
30.T. Aida, R.H., H. Niiyama Chemistry Letters,, 1990: p. 2247-2250.
31.Y. Takita, T.I., Y. Mizuhara, Y. Abe, T. Ishihara, Applied Catalysis B:Environmental,, 1992. v 1(n 2): p. 79-87.
32.M. Okumura, M.H., X. Wang, O. Kajikawa, O. Okada, Abstract 3rd Intern Conf Environmental Catal. Tokyo, 2001: p. 15.
33.L.Yan, X.Z., T. Ren, H. Zhang, X. Wang, J. Suo Chemical Communications, 2002: p. 860-861.
34.H. Sakurai, A.U., T. Kobayashi, M. Haruta,, J Chem Soc, Chemical Communications, , 1997: p. 271-272.
35.D. Andreeva, V.I., T. Tabakov, A. Andreev, Journal of Catalysis,, 1996. v158(n1): p. 354-355.
36.Tabakova, T., et al., Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO, Au/Fe2O3-ZrO2 catalysts for the WGS reaction. Applied Catalysis A: General, 2000. 202(1): p. 91-97.
37.H. Sakurai, M.H., Applied Catalysis A: General, , 1995. v127(n1-2): p. 93.
38.A. Baiker, M.K., M. Maciejewski, S. Menzi, A. Wokaun, L. Guzci, et al., Proc 10th Int Congr Catal, Elsevier, Amsterdam, 1993: p. 1257.
39.Hayashi, T., K. Tanaka, and M. Haruta, Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. Journal of Catalysis, 1998. 178(2): p. 566-575.
40.L. Prati, M.R., Green Chemistry: Challenging Perspectives. Tundo P, Anastas P, Eds. Oxford,, 2000: p. 183.
41.C. Bianchi, F.P., L. Prati, M. Rossi, Topics in Catal.,, 2000. 13: p. 231.
42.F. Porta, L.P., M. Rossi, S. Coluccia, G. Martra, Catalysis Today 2000. 61: p. 165.
43.J. Jia, K.H., J.N. Kondo, K. Domen, K. Tamaru, J. Phys. Chem, 2000. B, 104: p. 11153-11156.
44.G.C. Bond, P.A.S., Gold Bull 6, 1973: p. 102.
45.M. Okumura, T.A., M. Haruta, Catal Today, 2002. 74: p. 265.
46.J. E. Bailie, H.A.A., J. A. Anderson, C.H. Roechester, N.V. Richardson, N. Hodge, J.-G. Zhang, A. Burrows, C.J. Kiely, G.J. Hutchings, Phys Chem Chem Phys, 2001. 3: p. 4113.
47.C. Mohr, H.H., M. Lucas, P. Claus,, Chemie Ingenieur Techn, 1999. 71: p. 869.
48.Nkosi, B., et al., Hydrochlorination of acetylene using gold catalysts: A study of catalyst deactivation. Journal of Catalysis, 1991. 128(2): p. 366-377.
49.Bianchi, C., et al., Selective liquid phase oxidation using gold catalysts. Topics in Catalysis, 2000. 13(3): p. 231-236.
50.Kang, Y.M. and B.Z. Wan, Gold and iron supported on Y-type zeolite for carbon monoxide oxidation. Catalysis Today, 1997. 35(4): p. 379-392.
51.Bollinger, M.A. and M.A. Vannice, A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au-TiO2 catalysts. Applied Catalysis B: Environmental, 1996. 8(4): p. 417-443.
52.Lin, S.D., M. Bollinger, and M.A. Vannice, Low temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts. Catalysis Letters, 1993. 17(3-4): p. 245-262.
53.Srinivas, G., et al. 1996. p. 427-433.
54.Dimitratos, N., et al., Gold on titania: Effect of preparation method in the liquid phase oxidation. Applied Catalysis A: General, 2006. 311(1-2): p. 185-192.
55.Li, W.C., M. Comotti, and F. Schüth, Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation. Journal of Catalysis, 2006. 237(1): p. 190-196.
56.Debeila, M.A., et al., The effect of calcination temperature on the adsorption of nitric oxide on Au-TiO2: Drifts studies. Applied Catalysis A: General, 2005. 291(1-2): p. 98-115.
57.Smolentseva, E., et al., Influence of copper modifying additive on state of gold in zeolites. Surface Science, 2006. 600(18): p. 4256-4259.
58.Wagner, F.E., et al., Mössbauer characterisation of gold/iron oxide catalysts. Journal of the Chemical Society - Faraday Transactions, 1997. 93(18): p. 3403-3409.
59.Finch, R.M., et al., Identification of active phases in Au-Fe catalysts for low-temperature CO oxidation. Physical Chemistry Chemical Physics, 1999. 1(3): p. 485-489.
60.Visco, A.M., et al., X-ray photoelectron spectroscopy of Au/Fe2O3 catalysts. Physical Chemistry Chemical Physics, 1999. 1(11): p. 2869-2873.
61.Llorca, J., et al., Propene epoxidation over TiO2-supported Au-Cu alloy catalysts prepared from thiol-capped nanoparticles. Journal of Catalysis, 2008. 258(1): p. 187-198.
62.Chang, L.H., N. Sasirekha, and Y.W. Chen, Au/MnO2-TiO2 catalyst for preferential oxidation of carbon monoxide in hydrogen stream. Catalysis Communications, 2007. 8(11): p. 1702-1710.
63.Haruta, M., Catal. Today, 1997. 36: p. 153.
64.Kung, H.H., M.C. Kung, and C.K. Costello, Supported Au catalysts for low temperature CO oxidation. Journal of Catalysis, 2003. 216(1-2): p. 425-432.
65.Chen, Y.J. and C.T. Yeh, Deposition of highly dispersed gold on alumina support. Journal of Catalysis, 2001. 200(1): p. 59-68.
66.Mavrikakis, M., P. Stoltze, and J.K. Nørskov, Making gold less noble. Catalysis Letters, 2000. 64(2-4): p. 101-106.
67.Okumura, M., Tsubota, S., Iwamoto, M., Haruta, M., Hemical-vapor-deposition of gold nanoparticles on Mcm-41 and their
catalytic activities for the low-temperature oxidation of CO and of H-2. Reaction Kinetics and Catalysis Letters, 1998: p. 315.
68.Kang, Y.M. and B.Z. Wan, Pretreatment effect of gold/iron/zeolite-y on carbon monoxide oxidation. Catalysis Today, 1995. 26(1): p. 59-69.
69.Yang, Y.F., P. Sangeetha, and Y.W. Chen, Au/TiO2 catalysts prepared by photo-deposition method for selective CO oxidation in H2 stream. International Journal of Hydrogen Energy, 2009. 34(21): p. 8912-8920.
70.Haruta, M., Nanoparticulate gold catalysts for low-temperature CO oxidation. Journal of New Materials for Electrochemical Systems, 2004. 7(3 SPEC. ISS.): p. 163-172.
71.Wolf, A. and F. Schüth, A systematic study of the synthesis conditions for the preparation of highly active gold catalysts. Applied Catalysis A: General, 2002. 226(1-2): p. 1-13.
72.Parish, R.V., Organogold chemistry: III applications. Gold Bulletin, 1998. 31(1): p. 14-21.
73.Okumura, M., et al., The reactivities of dimethylgold(III)β-diketone on the surface of TiO2 A novel preparation method for Au catalysts. Solid State Ionics, 1997. 95(1-2): p. 143-149.
74.Okumura, M., S. Tsubota, and M. Haruta, Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2. Journal of Molecular Catalysis A: Chemical, 2003. 199(1-2): p. 73-84.
75.Yuan, Y., et al., Supported Au catalysts prepared from Au phosphine complexes and as-precipitated metal hydroxides: Characterization and low-temperature CO oxidation. Journal of Catalysis, 1997. 170(1): p. 191-199.
76.Mohr, C., et al., Gold catalysts for the partial hydrogenation of acrolein. Chemical Engineering and Technology, 2000. 23(4): p. 324-328.
77.Li, F.B. and X.Z. Li, Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Applied Catalysis A: General, 2002. 228(1-2): p. 15-27.
78.Liu, H., et al., Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated titanium hydroxide. Journal of Catalysis, 1999. 185(2): p. 252-264.
79.Olea, M., et al., Temporal analysis of products (TAP) study of the adsorption of CO, 02, and CO2 on a Au/Ti(OH)4* catalyst. Bulletin of the Chemical Society of Japan, 2001. 74(2): p. 255-265.
80.Olea, M., et al., TAP study on CO oxidation on a highly active Au/Ti (OH)4* catalyst. Physical Chemistry Chemical Physics, 2001. 3(4): p. 627-631.
81.Schubert, M.M., et al., CO oxidation over supported gold catalysts -"Inert" and "active" support materials and their role for the oxygen supply during reaction. Journal of Catalysis, 2001. 197(1): p. 113-122.
82.Park, E.D. and J.S. Lee, Effects of pretreatment conditions on CO oxidation over supported Au catalysts. Journal of Catalysis, 1999. 186(1): p. 1-11.
83.Boccuzzi, F., et al., Au/TiO2 nanosized samples: A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation. Journal of Catalysis, 2001. 202(2): p. 256-267.
84.Ruggiero, C. and P. Hollins, Interaction of CO molecules with the Au(332) surface. Surface Science, 1997. 377-379: p. 583-586.
85.Valden, M., X. Lai, and D.W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998. 281(5383): p. 1647-1650.
86.Grunwaldt, J.D. and A. Baiker, Gold/titania interfaces and their role in carbon monoxide oxidation. Journal of Physical Chemistry B, 1999. 103(6): p. 1002-1012.
87.Boccuzzi, F., et al., FTIR study of carbon monoxide oxidation and scrambling at room temperature over gold supported on ZnO and TiO2. 2. Journal of Physical Chemistry, 1996. 100(9): p. 3625-3631.
88.Okumura, M., 1999.
89.C. K. Chang, C.T.Y., Y. J. Chen, Appl. Catal., 1998. A174: p. 13.
90.J. Chastain, R.C.K., 1995.
91.Goran Smit, N.S., Menno W.J. Craj, Karoly Lazar, Journal of Molecular Catalysis A: Chemical, (2006). 252: p. 163–170.
92.Debeila, M.A., et al., DRIFTS studies of the interaction of nitric oxide and carbon monoxide on Au-TiO2. Catalysis Today, 2002. 72(1-2): p. 79-87.
93.White, K.T.a.J.M., J. Phyys. Chem., 1982. 86: p. 4708.
94.Rochester(Editors), A.A.D.a.C.H., 1984.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊