跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 04:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳泓杰
研究生(外文):Hong-Jie Chen
論文名稱:應用釩氧化物奈米柱產氫之研究
論文名稱(外文):The study of hydrogen production by Vanadium oxides nanotubes
指導教授:楊重光楊重光引用關係
指導教授(外文):Chung-Kuang Yang
口試委員:曾子峯劉懷德
口試委員(外文):Zi-Feng ZengHwai-Der Liu
口試日期:2012-01-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:71
中文關鍵詞:陽極處理奈米模板電沉積法產氫
外文關鍵詞:AnodizingOxide Templateelectrodepositionhydrothermal method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為兩部分,包括:(1)以商用鋁板(#1070)做為鋁陽極處理膜(Anodic Aluminum Oxide,AAO)之基材,製作奈米模板。(2)利用電沉積法 (electrodeposition) 於奈米模板孔隙中製備釩氧化物(VxOy)奈米柱。其中,利用實驗設計法搭配變異數分析(Analysis of Variance)做進一步之研究,電沉積法之控制變因包括:釩酸鈉溶液濃度、操作電壓和沉積時間,並探討對產氫實驗的影響與效率。
鋁板經電解拋光後,利用草酸電解液於實驗條件控制下經過陽極處理(AAO)獲得奈米模板。該模板經電化學製程後,表面會形成一具高規則孔隙之高品質奈米模板薄膜。使用電沉積法利用釩酸鈉(Na3VO4)溶液為反應溶液,並利用外加電壓0.3V之輔助,使釩離子沉積於AAO模板內,待乾燥後VxOy奈米柱即形成。將所製作之VxOy奈米柱,以鉻酸和磷酸混合液(6vol% H3PO4+ 1.8wt% chromic acid(CrO3))於恆溫(25℃)下移除奈米模板,製成奈米柱。本研究利用化學分析能譜儀(Electron Spectroscopy for Chemical Analysis, ESCA)、場發電子顯微鏡 (Field Emission-Scanning Electron Microscope, FE-SEM)及能量散射光譜儀(Energy Dispersive Spectrometer, EDS)分析其電沉積產物之物理及化學性質。

Semiconductor metal oxides such as TiO2, Ta3N5, and Ag3VO4 are often treated as the photocatalysts for light-induced photo-oxidation of water. Previous studies in our group have shown that vanadium oxides particles were photocatalysts for water-splitting. However, the performance of catalysts can vary significantly by its surface morphology. As a result, this study aims to investigate the hydrogen production capability of vanadium oxides with 1-D nano-structure. The commercial aluminum (#1070) was firstly anodized to aluminum films (Anodic Aluminum Oxide, AAO) as the nano-scale templates. Then, vanadium oxide nanorods were fabricated and deposited finto the template through electrodeposition method. In addition, design of experiment accompanied with ANOVA was applied to analyze the significance of the control factors including concentrations of sodium vanadate, applied voltage, and deposition time. The properties of vanadium oxide nanorods were characterized by ESCA(Electron Spectroscopy for Chemical Analysis), FE-SEM (Field Emission-Scanning Electron Microscope) and EDS (Energy Dispersive Spectrometer).

摘 要 i
誌 謝 iii
目 錄 iv
圖 目 錄 vi
表 目 錄 viii
第一章 前言 1
1-1 光觸媒簡介 1
1-2 研究動機及目的 2
第二章 文獻回顧 3
2-1 一維奈米材料製備方法 3
2-2 氧化鋁奈米模板 8
2-2-1 氧化鋁奈米模板製備原理 8
2-2-2 多孔氧化膜生成機制 11
2-2-3 鋁基材前處理-電解拋光 15
2-3 陽極處理後鋁奈米模板之應用 18
2-4 氧化釩概述 22
2-4-1 氧化釩之光、電特性研究背景 23
2-5實驗設計法 27
第三章 實驗方法與流程 30
3-1 實驗原料 30
3-2 實驗設備 30
3-3 實驗流程 32
3-3-1 陽極處理流程 32
3-3-1-1 對鋁基材的電化學拋光 32
3-3-1-2 對鋁基材的陽極處理 33
3-3-2 一維奈米陣列 35
3-3-3 產氫實驗 37
3-4 實驗設計法因子 38
3-5 分析方法 40
3-5-1 SEM、EDS 40
3-5-2 AFM 41
3-5-3 ESCA 43
3-5-4 OCP 44
3-5-5 ICP 44
3-5-6 Raman Laser 46
3-5-7 XRD 47
第四章 結果與討論 49
4-1 製備氧化鋁奈米模板 49
4-1-1 表面微結構對製備氧化鋁奈米模板之影響 49
4-1-2 移除奈米模板時間對VxOy奈米柱陣列之影響 52
4-2 實驗設計法 54
4-2-1 變異數分析 54
4-3 奈米柱陣列分析 62
4-3-1 EDS分析 62
4-3-2 ICP分析 63
4-3-3 Raman分析 63
第五章 結論與建議 64
5-1 結論 64
5-2 建議 64
參考文獻 65

[1] A.Fujishima, K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, vol. 238, 1972, pp.37-38.
[2] T. Puangpetch, T. Sreethawong, S. Yoshikawa, S. Chavadej, "Hydrogen production from photocatalytic water splitting overmesoporous-assembled SrTiO3 nanocrystal-based photocatalysts, " Journal of Molecular Catalysis A: Chemical vol. 312, 2009, pp. 97-106.
[3] G. R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, "Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of AuTiO2 and PtTiO2," Journal of Photochemistry and Photobiology A: Chemistry, vol. 89, no. 2, 1995, pp. 177-189.
[4] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R.E. Smalley, "C60 : Buckminsterfullerene," Nature, vol. 318, 1985, pp. 162-163.
[5] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, 1991, pp. 56-58.
[6] R. S. Wanger, W. C. Ellis, "Vapor­liquid­solid mechanism of single crystal growth "Applied Physics Letters, vol. 4, no. 89, 1964.
[7] D. Wang, H. Dai, "Germanium nanowires: from synthesis, surface chemistry, and assembly to devices" APPLIED PHYSICS A: MATERIALS SCIENCE & PROCESSING, vol. 85, no. 3, 2006, pp. 217-225.
[8] D. P. Yu, Q. I. Hang, Y. Ding, "Nanoscale silicon wires synthesized using simple physical evaporation" Applied Physics Letters, vol.72, no.26, 1998, pp. 3458.
[9] G. E. Possin, " A Method for Forming Very Small Diameter Wires"Review of Scientific Instruments., vol. 41, no.5, 1970, pp. 772.
[10] L. Sun, P. C. Searson, "Electrochemical deposition of nickel nanowire arrays in single-crystal mica films " Applied Physics Letters, vol. 74, 1999, pp. 2803-2805.
[11] T. M. Whitney, J. S. Jiang, P. C. Searson, C. L. Chien, "Fabrication and Magnetic Properties of Arrays of Metallic Nanowires," Science, vol. 261, no. 5126, 1993, pp. 1316-1319.
[12] A. P. Li, F. Müller, A. Birner, K. Nielsch, U. J. Gösele, "Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina "Applied Physics Letters, vol. 84, no.11, 1998, pp. 6023.
[13] H. Li, C. L. Xu, G. Y. Zhao, H. L. Li, "Electrodeposition of ferromagnetic nanowire arrays on AAO/Ti/Si substrate for ultrahigh-density magnetic storage devices," Materials Letters, vol.60, no. 19, 2006, pp.2335-2338.
[14] C. G. Jin, G. W. Jiang, W. F. Liu, W. L. Cai, L. Z. Yao, Z. Yao, X. G. Li, "Fabrication of large-area single crystal bismuth nanowire arrays," Journal of Materials Chemistry, no. 13, 2003, pp.1743-1746.
[15] J. U. Cho, Q. X. Liu, J. H. Min, S. P. Ko, Y. K. Kim, "Effect of external magnetic field on anisotropy of Co/Cu multilayer nanowires " Journal of Applied Physics Vol.99 no. 8, 2006, pp. 909.
[16] S. K. Thamida, H.C. Chang, "Nanoscale pore formation dynamics during aluminum anodization, " Chaos, vol. 12, no. 1, 2002, pp. 240-251.
[17] F. Li, L. Zhang, R. M. Metzger, "On the growth of highly ordered pores in anodizied alumiunm oxide," Chemistry of Materials, vol. 10, no. 9, 1998 pp. 2470-2480.
[18] A. P. Li, F. Müller, A.Birner, K. Nielsch, U. Gösele, "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anobic," Journal of Applied Physics, vol. 84, no. 11, 1998, pp.6023-6026.
[19] O. Jessensky, F. Müller, U. Gösele, "Self-organized formation of hexagonal pore arrays in anodic alumina," Journal of Applied Physics, vol. 72, no. 10, 1998, pp. 1173-1175.
[20] I. Vrublevsky, V. Parkoum, V. Sokol, J. schreckenbach, G. Marx, "The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime,"Applied Surface Science, vol. 222, no.1-4, 2004, pp. 215-225.
[21] I. Vrublevsky, V. Parkoum, J. schreckenbach, G. Marx, "Study of porous oxidefilm 80growth on aluminum in oxalic acid using a re-anodizing technique," Applied Surface Science, vol. 227, no. 1-4, 2004, pp.282-292.
[22] J. Zou, L. Pu, X. Bao, D. Feng, "Branchy alumina nanotubes," Applied Physics Letters, vol. 80, no. 6, 2002, pp.1079-1081.
[23] Y. C. Sui, B. Z. Cui, L. Martinez, R. Perez, and D. J. Sellmyer,"Pore structure, barrier layer topography and matrix alumina structure of porous anodic alumina film," Thin Solid Films, vol. 406,no. 1-2, 2002, pp.64-69.
[24] A. Mozalev, S. Magaino, H. Imai, "The formation of nanoporous membranesfrom anodically oxidized aluminum and their application to Li rechargeable batteries," Electrochemica Acta, vol. 46, no. 18, 2001, pp.2825-2834.
[25] Y. T. Tian, G. W. Meng, T. Gao, S. H. Sun, T. Xie, X. S. Peng, "Alumina nanowire arrays standing on a porous anodic alumina membrane," Nanotechnology, vol. 15, no. 1, 2004, pp.189-191.
[26] J. Newby, K. Mills, ASM Metals Handbook,Metallography and microstructures,ASM International, 1985, pp. 48.
[27] P. A. Jacquet, "Electrolytic polishing of metallic surface," Metallurgical Reviews,vol. 1, 1956, pp. 157-238.
[28] P. V. Schigolev, Electrolytic and chemical polishing of metal, Tel Aviv, Israel , Freund Publishing House, 1970.
[29] A. I. Vorobyova, V. A. Sokil, E. A. Outkina, "SEM investigation of pillared microstructures formed by electrochemical anodization," APPLIED PHYSICS A: MATERIALS SCIENCE & PROCESSING, vol. 67, no. 4, 1998, pp.487-492.
[30] A. I. Vorobyova, E. A. Outkina,"Study of pillar microstructure formation with anodic oxides," Thin Solid Films, vol. 324, no.1, 1998, pp.1-10.
[31] 陳柏林,奈米碳管與氧化鈦奈米點之陽極氧化鋁模板輔助成長與電子場效發射,博士論文,國立交通大學材料科學與工程學系,新竹,2005。
[32] P. Gu, J. H. Zhao, G. H. Li, M. Gong, "Highly ordered carbon nanotube arrays with open ends grown in anodic alumina nanoholes," JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY MATERIALS SCIENCE EDITION, vol. 18, no. 811, 2003, pp. 7-8.
[33] S. K. Hwang, J. H. Lee, S. H. Jeong, P. S. Lee, K. H. Lee, "Fabrication of carbon nanotube emitters in an anodic aluminium oxide nanotemplate on a Si wafer by multi-step anodization," Nanotechnology, vol. 16, no.6, 2005, pp.850-858.
[34] T. Qiu, X. L. Wu, G. S. Huang, G. G. Siu, Y. F. Mei, F. Kong, M. Jiang, "Individual alumina nanotubes coaxially wrapping carbon nanotubes and nanowires," Thin Solid Films, vol. 478, no. 1-2, 2005, pp. 56-60.
[35] Y. Yang, H. Chen, Y. F. Mei, J. B. Chen, X. L. Wu, X. Bao, "Anodic alumina template on Au/Si substrate and preparation of CdS nanowires," Solid State Communications, vol. 123, no.6-7, 2002, pp.279-282.
[36] D. Routkevitch, A. A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, J. M. Xu, "Nonlithographic nano-wire arrays: Fabrication, Physics, and device applications," IEEE Transactions on Electron Devices, vol. 43, no.10, 1996, pp.1646-1658.
[37] R. K. Nahar, "Study of the performance degradation of thin film aluminum oxide sensor at high humidity," Sensors and Actuators, B: Chemical, vol. 63, no. 1-2, 2000, pp.49-54.
[38] R. K. Nahar, V. K. Khanna, "Ionic doping and inversion of the characteristic of thin film porous Al2O3 humidity sensor," Sensors and Actuators, B: Chemical, vol. 46, no. 1, 1998, pp.35-41.
[39] G. Sberveglieri, R. Anchisini, R. Murri, C. Ercoli, N. Pinto, "Al2O3 sensor for low humidity content: characterization by impedance spectroscopy," Sensors and Actuators, B: Chemical, vol. 32, no. 1, 1996, pp. 1-5.
[40] W. G. Yelton, K. B. Pfeifer, A. W. Staton, "Porous Al2O3 nanogeometry sensor films: Growth and analysis," Journal of the Electrochemical Society, vol. 149, no. 1, 2002, pp.1-5.
[41] F. J. Morin, "Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature," Physical Review Letters, vol. 3, no. 1, 1959, pp. 34-36.
[42] W. Rstoker, The Metallurgy of Vanadium, New York, John Wiley & Sons, 1958.
[43] H. B. Scaches, Semiconducting Temperature Sensors and their Applications, New York: John Wiley & Sons, 1975.
[44] B. F. Briffing, S. P. Faile, J. M. Honig, "Evidence for one-dimensional spin order in V3O5 ," Physical. Review B, vol. 21, no. 1, 1980, pp. 154-158.
[45] R.J.H. Clark, The Chemistry of Titanium and Vanadium, Amsterdam, Elsevier, 1968.
[46] R. J. Keyes, Optical and Infrared Detectors, Thermal Detectors, New York Springer-Verlag, 1997.
[47] S.M. Babulanam, T.S. Eriksson, G.A. Niklasson, C.G. Granqvist, "hermochromic VO2 films for energy-efficient windows," Solar Energy Materials, vol. 16, no. 5, 1987, pp. 347-363.
[48] M. Soltani, M. Chaker, E. Haddad, R.V. Kruzelecky, D. Nikanpour, "Optical switching of vanadium dioxide thin films deposited by reactive pulsed laser deposition " Journal of Vacuum Science & Technology A, vol. 22, no. 3, 2004, pp. 859-864.
[49] A. Cavalleri, C. Toth, C.W. Siders, J.A. Squier, F. Raksi, P. Forget, J.C. Kieffer, "Femtosecond structural dynamics in VO2 during a solid-to-solid phase transition," Physical Review Letters, vol. 87, no.23, 2001, pp. 237-241.
[50] D. Xiao, K.W. Kim, J.M. Zavada, "Electrically Programmable Photonic Crystal Slab Based on the Metal-Insulator Transition in VO2, " Journal of Applied Physics , vol. 97, no. 10, 2005, pp.106-108.
[51] C. Chen, X. Yi, X. Zhao, and B. Xiong, Sens. "Characterizations of VO2-based uncooled microbolometer linear array," Sensors and Actuators A: Physical, vol.90, no. 3, 2001, pp. 212-214.
[52] D. Zintu, G. Tosone, and A. Mercuri, "Dual ion beam sputtering vanadium dioxide microbolometers by surface micromachining," Infrared Physics & Technology, vol. 43, no, 3-5, 2002, pp. 245-250.
[53] S. Minomura and H. Nagasaki, "The effect of pressure on the metal-to-insulator transition in V2O4 and V2O3 ," Journal of the Physical Society of Japan, vol. 19, 83no. 1, 1964, pp. 131.
[54] C. N. Berglund, H. J. Guggenheim, "Electronic Properties of VO2 near the Semiconductor-Metal Transition," Physical Review online Archive, vol. 185,no. 3, 1969, pp. 1022-1033.
[55] C. N. Berglund, A. Jayaroman, "Hydrostatic-Pressure Dependence of the Electronic Properties of VO2 Near the Semiconductor-Metal Transition Temperature," Physical Review online Archive, vol. 185, no. 3, 1969, pp. 1034-1039.
[56] J. F. De Natale, P. J. Hood, A. B. Harker, "Formation and characterization of grain­oriented VO2 thin films," Journal of Applied Physics, vol. 66, no. 12, 1989, pp. 5844-5850.
[57] B. Goodenough, "The two components of the crystallographic transition in VO2 ," Journal of Applied Physics, vol. 3, no. 4, 1971, pp. 490-500.
[58] W. R. Roach, "Holographic Storage in VO 2 ," Applied Physics Letters, vol. 19, 1971, pp. 453-455.
[59] W. Haidinger, D. Gross, "Anomalous hysteresis shape of thin VO2 layers," Thin Solid Film, vol. 12, no. 2, 1972, pp. 433-438.
[60] G. V. Jorgensen, J. C. Lee, "Doped vanadium oxide for optical switching films,"Solar Energy Mater, vol. 14, no. 3-5, 1986, pp. 205-214.
[61] J. Livage, G. Guzman, F. Beteille and P. Davidson, " Optical properties of sol–gel derived vanadium oxide lms," JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, vol. 8, no.1-3, 1997, pp. 857-865.
[62] A. W. Smith, "Optical storage in VO2 films," Applied Physics Letters, vol. 23, no. 8, 1973, pp. 437-438.
[63] D. D. Eden, "VANADIUM DIOXIDE STORAGE MATERIAL," Optical engineering : the journal of the Society of Photo-optical Instrumentation Engineers, vol. 20, no. 3, 1981, pp. 377-378.
[64] M. Fukuma, S. Zembutsu, S. Miyazawa, "Preparation of VO2 thin film and its direct optical bit recording characteristics," Applied Optics, vol. 22, no. 2. 1983, 84pp. 265-268.
[65] T. Ohno, F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumura," Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder," Journal of Photochemistry and Photobiology A: Chemistry, vol. 127, no. 1-3, 1999, pp. 107-110.
[66] Xingjina Yi, Changhong Chen, Luqin Liu, Yingrui Wang, Bifeng Xiong, Hongchen Wang, Sihai Chen,"A new fabrication method for vanadium dioxide thin films deposited by ion beam sputtering," Infrared Physics & Technology, vol. 44, no. 2, 2003, pp. 137-141.
[67] Changhong Chen, Xingjina Yi, Jing Zhang, Xingrong Zhao, "Linear uncooled microbolometer array based on VOx thin films," Infrared Physics & Technology, vol. 42, no. 2, 2001, pp. 87-90.
[68] Changhong Chen, Xingjina Yi, Xingrong Zhao, Bifeng Xiong, " Preparation and properties of vanadium dioxide thin films for uncooled microbolometer, " Infrared and Millimeter Waves, Beijing , China., 2000, pp.145-146.
[69] Changhong Chen, Xingjina Yi, Xingrong Zhao, Bifeng Xiong, "Characterizations of VO2-based uncooled microbolometer linear array," Sensors and Actuators A: Physical, vol. 90, no. 3, 2001, pp. 212-214 ,(2001)
[70] V. Yu. Zerov, Yu. V. Kulikov, V. G. Malyarov, I. A. Khrebtov, I. I. Shaganov, E. B. Shadrin, "Vanadium oxide films with improved characteristics for ir microbolometric matrices," Technical Physics Letters, vol. 27 no. 5, 2001, pp. 378-380.
[71] D. Zintu, G. Tosone, A. Mercuri, "Dual ion beam sputtering vanadium dioxide microbolometers by surface micromachining," Infrared Physics & Technology, vol. 43, no.3-5, 2002, pp. 245-250.
[72] M. B. Sahana, M. S. Dharmaprakash, S. A. Shivashankar, "Microstructure and properties of VO2 thin films deposited by MOCVD from vanadyl acetylacetonate," Journal of Materials Chemistry, vol. 12, no. 2, 2002, pp. 333-338.
[73] R. T. Rajendra, B. Karunagaran, D. Mangalaraj, Sa. K. Narayandass, P.Manoravi, M. Joaeph, Vishnu Gopal, R. K. Madaria, J. P. Singh," Room temperature deposited vanadium oxide thin films for uncooled infrared detectors,"Materials Research Bulletin, vol. 38, no. 7, 2003, pp. 1235-1240.
[74] A. Rogalski, Infrared detector, Gordon and Breach Science Publishers, Amsterdam, 2000.
[75] R. A. Wood, Infrared Detector and Emitters: Materials and Devices, 2000, pp. 149-174.
[76] C. H. Chen, X. J. Yi, J. Zhang and X. R. Zhao, "Linear uncooled microbolometer array based on VOx thin films," Infrared Physics & Technology, vol.42, no. 2,2001, pp. 87-90.
[77] Montgomery著,黎正中、陳源樹編譯高力圖書有限公司,台北,2003。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top