|
[1] Khor, E. and L.Y. Lim, Implantable applications of chitin and chitosan. Biomaterials, 2003. 24(13): p. 2339-49. [2] Harish Prashanth, K.V. and R.N. Tharanathan, Chitin/chitosan: modifications and their unlimited application potential - an overview. Trends in Food Science & Technology 2007. 18: p. 117-131. [3] Kim, I.Y., et al., Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv, 2008. 26(1): p. 1-21. [4] Madihally, S.V. and H.W. Matthew, Porous chitosan scaffolds for tissue engineering. Biomaterials, 1999. 20(12): p. 1133-42. [5] Seol, Y.J., et al., Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett, 2004. 26(13): p. 1037-41. [6] Seeherman, H., R. Li, and J. Wozney, A review of preclinical program development for evaluating injectable carriers for osteogenic factors. J Bone Joint Surg Am, 2003. 85-A Suppl 3: p. 96-108. [7] Di Martino, A., M. Sittinger, and M.V. Risbud, Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 2005. 26(30): p. 5983-90. [8] Zhang, Y. and M. Zhang, Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res, 2001. 55(3): p. 304-12. [9] Zhang, Y. and M. Zhang, Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res, 2002. 62(3): p. 378-86. [10] Zhang, Y. and M. Zhang, Three-dimensional macroporous calcium phosphate 51 bioceramics with nested chitosan sponges for load-bearing bone implants. J Biomed Mater Res, 2002. 61(1): p. 1-8. [11] Zhang, Y., et al., Calcium phosphate-chitosan composite scaffolds for bone tissue engineering. Tissue Eng, 2003. 9(2): p. 337-45. [12] Ge, Z., et al., Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials, 2004. 25(6): p. 1049-58. [13] Hu, Q., et al., Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials, 2004. 25(5): p. 779-85. [14] Cai, K., et al., Surface modification of poly (D,L-lactic acid) with chitosan and its effects on the culture of osteoblasts in vitro. J Biomed Mater Res, 2002. 60(3): p. 398-404. [15] Zhang, Y. and M. Zhang, Microstructural and mechanical characterization of chitosan scaffolds reinforced by calcium phosphate. Non-crystalline solids, 2001. 282(2-3): p. 159-164. [16] Hsieh, W.C., C.P. Chang, and S.M. Lin, Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering. Colloids Surf B Biointerfaces, 2007. 57(2): p. 250-5. [17] 朱怡靜, 幾丁聚醣接枝胺基酸之多孔薄膜製備及其應用. 國立聯合大學化學 工程研究所 碩士論文, 1996. [18] Bigi, A., et al., Stabilization of gelatin films by crosslinking with genipin. Biomaterials, 2002. 23(24): p. 4827-32. [19] Sung, H.W., et al., Feasibility study of a natural crosslinking reagent for biological tissue fixation. J Biomed Mater Res, 1998. 42(4): p. 560-7.52 [20] Muzzarelli, R.A.A., Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers, 2009. 77: p. 1-9. [21] Wang, L., et al., Chitosan-alginate PEC membrane as a wound dressing: Assessment of incisional wound healing. J Biomed Mater Res, 2002. 63(5): p. 610-8. [22] Dumitriu, S., Polysaccharide Book for Medicinal Application. Marcel Dekker Inc, New York, 1998. [23] 蔡政翰, 以化學修飾法改進幾丁聚醣之溶解度. 國立台灣大學食品科技研究 所 碩士論文, 1996. [24] 葉志宗, 以幾丁聚醣為基質製備應用於藥物釋放之組織工程多孔性支架. 國 立台北科技大學化學工程研究所 碩士論文, 2009. [25] Sriamornsak, P. and S. Puttipipatkhachorn, Chitosan-pectin composite gel spheres: Effect of some formulation variables on drug release. Macromolecular Symposia, 2004. 216: p. 17-21. [26] Elsabee, M.Z., et al., Surface modification of polypropylene films by chitosan and chitosan/pectin multilayer. Carbohydrate Polymers, 2008. 71(2): p. 187-195. [27] Aubin, J.E., et al., Osteoblast and chondroblast differentiation. Bone, 1995. 17(2 Suppl): p. 77S-83S. [28] Lian, J.B. and G.S. Stein, Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation. Iowa Orthop J, 1995. 15: p. 118-40. [29] Intan Zarina, Z.A., et al., Osteoclast and osteoblast development of Mus musculus haemopoietic Mononucleated cells. Biological Science, 2008. 8(3): p. 506-516. [30] Phan, T.C., J. Xu, and M.H. Zheng, Interaction between osteoblast and 53 osteoclast: impact in bone disease. Histol Histopathol, 2004. 19(4): p. 1325-44. [31] Lian, J.B. and G.S. Stein, Osteoporosis:chapter 6. Osteoblast Biology, 2008: p. 93-150. [32] van''t Hof, R.J. and S.H. Ralston, Nitric oxide and bone. Immunology, 2001. 103(3): p. 255-61. [33] Suda, T., et al., Regulation of osteoclast function. J Bone Miner Res, 1997. 12(6): p. 869-79. [34] Raisz, L.G., Physiology and pathophysiology of bone remodeling. Clin Chem, 1999. 45(8 Pt 2): p. 1353-8. [35] Bone remodeling. Encyclopæ dia Britannica, Inc [36] Sachlos, E., et al., Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials, 2003. 24(8): p. 1487-97. [37] Sachlos, E. and J.T. Czernuszka, Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater, 2003. 5: p. 29-39; discussion 39-40. [38] Li, J.P., et al., Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials, 2006. 27(8): p. 1223-35. [39] Woodfield, T.B., et al., Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials, 2004. 25(18): p. 4149-61. [40] Yeong, W.Y., et al., Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol, 2004. 22(12): p. 643-52. [41] Mikos, A.G., et al., Preparation and characterization of poly(L-lactic acid) foam. Polymer 1994. 35(5): p. 1068-1077.54 [42] Mooney, D.J., et al., Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials, 1996. 17(14): p. 1417-22. [43] Freed, L.E., et al., Biodegradable polymer scaffolds for tissue engineering. Biotechnology (N Y), 1994. 12(7): p. 689-93. [44] Lo, H., M.S. Ponticiello, and K.W. Leong, Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng, 1995. 1(1): p. 15-28. [45] Thomson, R.C., et al., Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed, 1995. 7(1): p. 23-38. [46] Whang, K., et al., A novel method to fabricate bioabsorbable scaffolds. Polymer 1995. 36(4): p. 837-842. [47] Hsu, Y.Y., et al., Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compressed foam matrices. J Biomed Mater Res, 1997. 35(1): p. 107-16. [48] Zein, I., et al., Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 2002. 23(4): p. 1169-85. [49] Tan, K.H., et al., Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials, 2003. 24(18): p. 3115-23. [50] Kim, S.S., et al., Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann Surg, 1998. 228(1): p. 8-13. [51] Landers, R., et al., Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. Materials Science, 2002. 37: p. 3107-3116. [52] Rao, S.B. and C.P. Sharma, Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res, 1997. 34(1): p. 21-8. [53] Mi, F.L., et al., In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials, 2002. 23(1): p. 181-91. [54] Rosa, A.L. and M.M. Beloti, Development of the osteoblast phenotype of serial cell subcultures from human bone marrow. Braz Dent J, 2005. 16(3): p. 225-30. [55] Yao, C.H., et al., Biocompatibility and biodegradation of a bone composite containing tricalcium phosphate and genipin crosslinked gelatin. J Biomed Mater Res A, 2004. 69(4): p. 709-17. [56] Braccini, I. and S. Perez, Molecular basis of C(2+)-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules, 2001. 2(4): p. 1089-96.
|