跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 14:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃耀弘
研究生(外文):Yao-Hung Huang 黃耀弘
論文名稱:異型複合纖維熔融紡絲程序之模流分析
論文名稱(外文):Numerical Simulation of Melt Spinning Process of Profile-Conjugated Fibers
指導教授:蘇淵源
口試委員:簡煥聲鄭國忠
口試日期:2012-06-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:86
中文關鍵詞:異型複合纖維十字型變異度
外文關鍵詞:profile-conjugated fiberscross shapedegree of variation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
異型複合纖維獨特的形狀與其雙成份的加乘特性,賦予異型複合纖維功能多樣化,更由於芯層纖維特殊的形狀,締造不可替代性,能夠用來防偽,為品牌創造更高的附加價值。異型複合纖維融熔紡絲過程中,各高分子成分經由個別流道匯聚於紡嘴經縮口,形成共紡程序,並於出紡口後施加拉伸速度,達到理想纖維細度。在雙成分共紡程序中,由於兩熔體複雜的流變性及具激烈縮口的紡嘴幾何,對兩熔體間界面位置的決定有關鍵的影響,進而影響芯層纖維的幾何形狀,因此本研究利用三維有限元素法,搭配符合材料特性的本質方程式,針對紡絲條件、流變性質、拉伸效應對異型複合纖維成形,作一系統的深入探討並建立其模擬分析技術。異型複合纖維的成形,可透過流量比的控制與高黏度比的搭配,使芯層變異度降低而得到較佳的芯層纖維形狀。至於施加拉伸速度,只會使纖維的整體膨脹比下降,並不影響芯層變異度。此外,當改變芯層十字的進料位置,往X和XY軸方向偏心,可得到纖維偏心度與進料位置芯層紡嘴偏心距離成反比,當芯層紡嘴偏心距離達1/2半徑,芯層十字型纖維不易成形;然而,在雙芯層一字型纖維紡絲程序中,其纖維偏心度與進料位置芯層紡嘴偏心距離成正比。


The multi-functional features of profile-conjugated fibers are mainly attributed to its unique profile and the synergetic trait of each individual component. Moreover, a unique profile of the core fiber provides anti-counterfeiting function, and creates higher value added products. In a melt-spinning process of profile-conjugated fibers, polymers pass through each individual channel followed by a converging spinneret as a co-extrusion process, and then be stretched to an appropriate size after flowing out of the converging spinneret. The location of the interface between two distinct polymers is seriously influenced by complicate rheological properties and the abruptly converging geometry in the spinneret. This study uses three-dimensional finite element method and appropriate constitutive equations to systematically investigate the effects of individual throughputs, rheological properties and stretching speed on the formation of profile-conjugate fibers.It is learned from the numerical analyses that appropriate throughput adjustment of each individual polymers and the arrangement of higher viscosity ratio configuration in melt-spinning process are two major factors to obtain profile-conjugated fibers with a lower geometry variation. Stretching action, however, has no effect on the geometry variation. In addition, it is demonstrated that the eccentricity of cross-shaped cores of spun fibers at the end of spinning is reversely proportional to the eccentric distance between two inlet polymer streams. When the eccentric distance is larger than the half of diameter of conjugated fibers, the formation of conjugated fibers with a cross-shaped core layer is difficult. However, for profile-conjugated fibers with twin-dash core layers, the eccentricity between two dashes in as-spun fibers is proportional to the eccentric distance between two dashes at the inlet location


摘 要 I
ABSTRACT II
誌謝 IV
目錄 V
圖目錄 X
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 紡絲工程 2
1.3 異型纖維 3
1.4 複合纖維 5
1.5 研究動機 7
第二章 文獻回顧 8
2.1 熔融紡絲 8
2.2 共擠押成型 9
2.3 微分型黏彈性數值模擬 12
第三章 數值模擬之原理 13
3.1 有限元素法 13
3.2統御方程式 16
第四章 材料方程式的建立 17
4.1 實驗設備 17
4.2 流變儀原理 18
4.2.1 平板式流變儀原理 18
4.2.2 毛細管式流變儀原理 19
4.3 流變性質 20
4.3.1 牛頓流體 20
4.3.2 非牛頓流體 21
4.3.3 微分型黏彈性流體 24
第五章 模擬方法 27
5.1 模擬流程 27
5.2 模具尺寸 28
5.2.1 芯層十字同心紡嘴尺寸 28
5.2.2 芯層十字偏心紡嘴尺寸 29
5.2.3 雙芯層一字型偏心紡嘴尺寸 31
5.3 邊界條件 32
5.3.1邊界設定(一)-恆溫模擬且無拉伸速度 32
5.3.2邊界設定(二)-恆溫模擬且施加拉伸速度 33
5.4 問題定義 34
5.4.1芯層十字同心紡嘴-問題定義 34
5.4.2芯層十字偏心紡嘴-問題定義 35
5.4.3雙芯層一字型偏心紡嘴-問題定義 36
5.5 網格劃分 41
5.6 網格收斂 46
第六章 結果與討論 48
6.1 芯層十字同心紡嘴 48
6.1.1流量比對芯層和鞘層膨脹比、芯層佔有率、變異度之影 49
6.1.2黏度比對芯層和鞘層膨脹比、芯層佔有率、變異度之影響 52
6.1.3流量比與黏度比的關係 55
6.1.4拉伸速度對芯層和鞘層膨脹比、芯層佔有率、變異度之影響 58
6.1.5黏度減稀性與彈性對異型複合纖維成形之影響 61
6.1.6黏度減稀性與拉伸速度對異型複合纖維成形之影響 69
6.2 芯層十字偏心紡嘴 72
6.3雙芯層一字型偏心紡嘴 75
第七章 結論 78
參考文獻 80
符號彙編 85


﹝1﹞鄧嬿娥,纖維化學,國彰出版社,(1980)
﹝2﹞郁銘芳,紡織新境界,清華大學出版社,(2002).
﹝3﹞葛明橋,紡織科技前沿,中國紡織出版社,(2004).
﹝4﹞A. Ziabick, Fundamentals of fiber formation, Wiley, (1976).
﹝5﹞E.J. Choi, S.Y. Kim, Y. Kwon, “One dimensional simplification in modeling som basic polymer processing operations 1.extrudate swell and fiber melt spinning”, Rheological Acta., 37, (1998), 601-613.
﹝6﹞J.C. Slattery, S. Lee, “Analysis of melt spinning”, Journal of Non-Newtonain Fluid Mechanics., 89, (2000), 273-286.
﹝7﹞A.K. Doufas, A.J. McHugh, C. Miller, “Simulation of melt spinning including flow-induced crystallization Part I. Model development and predictions”, Journal of Non-Newtonain Fluid Mechanics., 92, (2000), 27-66.
﹝8﹞H. J. Shim, M.S. Lee, S.Y. Kim, T.H. Oh, “Studies on melt-spinning process of hollow fibers”, Journal of applied Polymer Science., 68, (1998), 1209-1217.
﹝9﹞J. Sun, S. Subbiah, J.M. Marchal, “Numerical analysis of nonisothermal viscoelastic melt spinning with ongoing crystallization”, Journal of Non-Newtonain Fluid Mechanics., 93, (2000), 133-151.
﹝10﹞J. Sun, M.D. Smith, R.C. Armstrong, R.A. Brown, R.A. Ross, Y.L. Joo, “Two-dimensional numerical analysis of non-isothermal melt spinning with and without phase transition”, Journal of Non-Newtonain Fluid Mechanics., 102, (2002), 37-70.
﹝11﹞H.Y. Ho, W.S. Lee, ”Experimental study on extrudate swell and die geometry of profile extrusion”, Polymer Engineering and Science., 40, (2000), 1085-1094.
﹝12﹞B. Debbaut, F. Langouche, “Rheological characterization of a high-density polyethylene with a multi-mode differential viscoelastic model and numerical simulation of transient elongational recovery experiments”, Rheological. Acta., 38, (1999), 48-64.
﹝13﹞H. Ito, N. Okui, T. Kikutani, W. Takarada, “Studies on high-speed melt spinning of noncircular cross-section fiber. part I structural analysis of as-spun fibers”, Journal of Applied Polymer Science., 80, (2001), 1575-1581.
﹝14﹞H. Ito, N. Okui, T. Kikutani, W. Takarada, “Studies on high-speed melt spinning of noncircular cross-section fiber. part II on-line measurement of the spin line, including change in cross-sectional shape”, Journal of Applied Polymer Science., 80, (2001), 1582-1588.
﹝15﹞C. Zhou, H. Zheng, H. Zhang, W. Yu, ”Numerical simulation of the melt spinning process of noncircular fibers incorporating surface tension”, Journal of Macromolecular Science. Part B: Physics., 45, (2006), 1099-1108.
﹝16﹞J. Sienz, A. Goublomme, M. Luege, “Sensitivity analysis for the design of profile extrusion dies”, Computers and Structures., 88, (2010), 610-624.
﹝17﹞C.C. Ji, J.C. Yang, “Mechanics of steady flow in coextrusion fiber spinning”, Polymer Engineering and Science., 36, (1996), 1399-1409.
﹝18﹞W.A. Gifford, “A three-dimensional analysis of coextrusion”, Polymer Engineering and Science., 37, (1997), 315-320.
﹝19﹞W.A. Gifford, “A three-dimensional Analysis of coextrusion in a single manifold flat die”, Polymer Engineering and Science., 40, (2000), 2095-2105.
﹝20﹞B.L. Lee, J.L. White, ”An Experimental study of Rheological properties of polymer melts in laminar shear flow and of interface deformation and it’s mechanisms in two-phase stratified flow.”, Trans. Soc. Rheol., 18, (1974), 467-492.
﹝21﹞K.B. Sunwoo, K.H. Ahn, S.J. Park, S.J. Lee, “Numerical simulation of three-dimensional viscoelastic flow using the open boundary condiction method in coextrusion process”, Journal of Non-Newtonain Fluid Mechanics., 99, (2001), 125-144.
﹝22﹞J.H. Southern, R.L. Ballman, ”Additional observations on stratified bicomponent flow of polymer melts in a tube.”, Journal of Polymer Science, 13, (1975), 863-869.
﹝23﹞A.E. Everage, “Theory of stratified bicomponent flow of polymer melts. II. Interface motion in transient flow.”, Trans. the Society of Rheology, 19, (1975), 509-522.
﹝24﹞J.L. White, N. Minagawa, “Coextrusion of unifilled and TiO2-filled polyethylene:Influence of viscosity and die cross-section on interface shape.”, Polymer Engineering and Science., 15, (1975), 825-830.
﹝25﹞A.A. Khan, C.D. Han, “On the interface deformation in the stratified two-phase flow of viscoelastic fluids.”, Trans. the Society of Rheology, 20, (1976), 595-621.
﹝26﹞M. Zhang, C. Huang, S. Sun, Y. Jia, “The Finite Element Simulation of Polymer Coextrusion Based on the Slip Boundary”, Polym. Plast. Technol. Eng., (2009), 48, 754-759.
﹝27﹞吳嵐櫻,複合中空纖維熔融紡絲之研究,台北科技大學,2007.
﹝28﹞廖怡婷,偏心鞘芯型複合纖維及W型與十字型異形纖維熔融紡絲之數值模擬分析,台北科技大學,2008.
﹝29﹞黃琦冠,紡嘴幾何形狀與材料性質及溫度對熔融紡絲纖維變異度之影響,台北科技大學,2009.
﹝30﹞蔡政諺,鞘芯型複合纖維及非等溫4C型中空纖維熔融紡絲之數值模擬分析,台北科技大學,2010.
﹝31﹞洪偉登,非等溫中空纖維膜紡絲模流分析,台北科技大學,2011.
﹝32﹞B.A. Finlayson, P.W. Chang, T.W. Patten, “Collocation and Galerkin finite element methods for viscoelastic fluid. Parts Ι”, Computers & Fluids, 7, (1979), 267-283.
﹝33﹞M.J. Crochet, M. Bezy, “Numerical solution for the flow of viscoelastic fluids”, Journal of Non-Newtonain Fluid Mechanics., 5, (1979), 201-218.
﹝34﹞J.M. Marchal, M.J. Crochet, “A new mixed finite element for calculating viscoelastic flow”, Journal of Non-Newtonain Fluid Mechanics., 26, (1987), 77-114.
﹝35﹞B.A. Finlayson, R.R. Rao, “Viscoelastic flow simulation using cubic stress finite elements”, Journal of Non-Newtonain Fluid Mechanics., 43, (1992), 61-82.
﹝36﹞D. Rajagopalan, R.C. Armstrong, R.A. Brown, “Finite element methods for calculation of steady viscoelastic flow using constitutive equations with a Newtonian viscosity”, Journal of Non-Newtonain Fluid Mechanics., 36, (1990), 159-192.
﹝37﹞A. Bose, D. Rajagopalan, R.J. Phillips, R.C. Armstrong, R.A. Brown, “The influence of viscoelasticity on the existence of steady solutions in two-dimensional rimming flow”, Journal of Fluid Mechanics., 235, (1992), 611-642.
﹝38﹞F. Debae, M.J. Crochet, V. Legat, “Practical evaluation of four mixed finite element methods for viscoelastic flow”, Journal of Rheology., (1994), 38, 421-442.
﹝39﹞O. Hassager, R.B. Bird, R.C. Armetrong, Dymamics of Polymeric Liquid, Wiley, (1987).


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top