跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佳蓉
研究生(外文):Chia-Jung Wu
論文名稱:奈米碳管摻雜於 VO 2 薄膜上光電性質的影響
論文名稱(外文):Photoelectric Effects of VO 2 Films with The Addition of Carbon Nanotubes
指導教授:楊重光楊重光引用關係
指導教授(外文):Thomas C.-K. Yang
口試委員:曾子峰莊瑞誠
口試委員(外文):Rei-Cheng Juang
口試日期:2012-07-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:81
中文關鍵詞:溶膠凝膠備製二氧化釩奈米碳管
外文關鍵詞:Sol-gel methodVanadium dioxideCarbon Nanotube
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
具 熱 致 變 特 性 之 二 氧 化 釩 薄 膜 因 有 較 高 的 電 阻 溫 度 係 數 (Temperature
Coefficient of Resistance,TCR)故常被應用於非冷卻型微輻射熱感測元件之熱敏
電 阻 材 料 。 二氧化釩(VO 2 ) 薄膜是一 種 具有金屬 - 絕緣體轉 換 (Metal-insulator
Transition,MIT)性質的材料,會從室溫到約 68℃,由原先的半導體態轉變成導體
態,薄膜本身的電性、光學性質也會隨著溫度變化。而被廣泛運用於智慧窗玻璃、
熱敏元件等。
進而經由 Fourier transform infrared spectroscopy(FTIR)、Four-Point Probe 測量
在不同溫度下其光學性質及電性性質的改變,再用 Atomic force microscopy (AFM)
與 X-ray Diffraction (XRD)量測薄膜表面分布型態和結晶性質。本實驗是以溶膠凝
膠法摻雜奈米碳管(Carbon nanotubes,CNTs)於二氧化釩薄膜中,提高薄膜導電性及
其光學性質。就添加單壁奈米碳管、多壁奈米碳管為主,不同混合方式、添加比
例、成膜方式來討論,添加奈米碳管後 VO 2 在表面粗糙度、光學、電學上的改變
及差異,主要利用的是奈米碳管(CNTs)本身具有的高導電性、高化學穩定性、優
越的機械性質。
研究發現摻雜不同 CNTs 比例下的 VO 2 ,可有效的提高 VO 2 薄膜在室溫下的
電阻溫度係數(TCR),增加室溫下熱電阻材料對溫度的靈敏度。而添加不同種類的
碳管在電阻上,增加的幅度也會不同,以混合組而言,比例越高,MWCNTs 電阻
值會比 SWCNTs 來得低,但相對抑制電阻變化率也較高。成膜方式的改變會明顯
影響光學上遲滯寬度,分層組使遲滯寬度變窄,混合組則是增加遲滯寬度。電學
上,也因添加的碳管比例改變薄膜電阻效率。

Thermochromic properties of vanadium dioxide thin films have been applied in
bolometer materials of the uncooled microbolometers, because the vanadium dioxide
thin films have high temperature coefficient of resistance (TCR) at room temperature.
The property of vanadium dioxide is Metal-insulator Transition. The crystal phase,
electrical properties and optical properties of the VO 2 thin films are changed from the
room temperature to 68℃, therefore VO 2 thin films are applied in Smart Windows and
thermal element, and etc.
The optical and electrical properties of the thin films are analyzed by FTIR
andFour-Point Probe measurements in different temperature. In addition, surface
morphology and the crystallinity are analyzed by AFM and XRD measurements.
In this study, VO 2 thin film increase electric conductivity and optical properties
after single wall carbon nanotubes (SWCNTs) and multi wall carbon nanotubes
(MWCNTs) doped VO 2 thin film by sol-gel method. That are discussed from different
CNTs contents, form, surface roughness, grain size, transmittance, sheet resistance and resistivity, because high conductivity, stable chemistry and excellent mechanical
properties from CNTs.
In this paper, the increase of Temperature coefficient of reactivity (TCR) and
temperature of sensitivity of VO 2 thin films are found from doped different CNTs
contents. In lower CNTs contents, the rate of sheet resistances were decreased with the
inecrease of the CNTs contents. In different kind of CNTs-add, the lower sheet
resistances are got from the addition of MWCNTs. VO 2 sol and each kind of CNTs
powder are mixed and then calcined at 500℃. Results show that the higher rate of
decreasing sheet resistances and the wider of hysteresis loop.

摘 要 ............................................................................................................................... i
ABSTRACT ..................................................................................................................... iii
誌 謝 ................................................................................................................................ v
目錄 ................................................................................................................................. vi
表目錄 ........................................................................................................................... viii
圖目錄 ............................................................................................................................. ix
第一章 緒論 .............................................................................................................. 1
1.1 研究動機 ............................................................................................................... 1
1.2 研究目的 ............................................................................................................... 3
第二章 文獻回顧與原理概述 ........................................................................................ 4
2.1 二氧化釩(VO 2 )概述 .............................................................................................. 4
2.1.1 熱致變性(Thermalchromism) ........................................................................ 4
2.1.2 光致變性(Photochromism) ............................................................................ 9
2.1.3 電致變性(Electrochromism) ........................................................................ 10
2.1.4 VO 2 相轉變之遲滯效應(Hysteresis Loop) ................................................... 11
2.2 不純物(Impurities)摻混對 VO 2 相轉變之影響.................................................. 12
2.3 基板對 VO 2 相轉變之影響 ................................................................................. 14
2.4 溶膠凝膠法之原理概述 ..................................................................................... 16
2.4.1 溶膠與凝膠 .................................................................................................. 16
2.4.2 溶膠凝膠製程 .............................................................................................. 17
2.4.3 粒子在液相中之成核與成長過程 .............................................................. 20
2.4.4 以溶膠凝膠法製作功能性材料之優點 ...................................................... 21
2.4.5 溶膠凝膠技術之應用 .................................................................................. 23
2.6 奈米碳管(Carbon nanotube;CNTs) ............................................................. 24
2.6.1 結構與基本特性 .......................................................................................... 24
2.6.2 純化奈米碳管 .............................................................................................. 30
2.6.3 奈米碳管的應用 .......................................................................................... 32
第三章 實驗方法及儀器設備 ...................................................................................... 33
3.1 實驗藥品與基材 ................................................................................................. 33
3.1.1 實驗藥品 ...................................................................................................... 33
3.1.2 基板 .............................................................................................................. 33
3.2 實驗步驟 ............................................................................................................. 34
3.2.1 VO 2 薄膜製備 ................................................................................................ 34
3.3 儀器設備及參數 ................................................................................................. 41
第四章 實驗結果與討論 .............................................................................................. 45
4.1 AFM 薄膜表面檢測 .......................................................................................... 45
4.2 XRD 薄膜表面結晶分析 ..................................................................................... 54
4.3 IR 穿透度檢測 .................................................................................................. 58
4.4 薄膜電性檢測 ..................................................................................................... 65
第五章 結論 .................................................................................................................. 75
參考文獻 ........................................................................................................................ 77

77

參考文獻

1. F. J. Morin, Phys. Rev. Lett.,3(1) (1959) 34-35.
2. A. A. Bugaev, V. V. Gudyalis, B. P. Zakharchenya and F. A. Chudnovskiĭ, JETP
Lett. 34(8) (1982) 430-433.
3. A. A. Bugaev and A. V. Klochkov, Sov. Phys. Solid State, 26(11) (1984)
2100-2101.
4. G. Stefanovich, A. Pergament and D. Stefanovich, J. Phys.: Condens. Matter., 12
(2000) 8837-8845.
5. R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman and R. F. Haglund, Jr, J.
Appl. Phys., 92 (7) (2002) 4031-4036.
6. E. B. Shadrin and A. V. Iľinskiĭ, Phys. Solid State, 42 (6) (2000) 1126-1133.
7. R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman and R. F. Haglund, Jr, J.
Appl. Phys., 92 (7) (2002) 4031-4036.
8. A. L. Semenov, Phys. Solid State, 36 (7) (1994) 1079-1080.
9. M. A. Richardson and J. A. Coath, Optics & Technology, 30 (1998) 137-140.
10. C. B. Greenberg, Thin Solid Films, 110 (1983) 73-82.
11. G. Guaman, F. Beteille, R. Morineau and J. Livage, Eur. J. Solid State Inorg. Chem.,
32 (1995) 851-861.
12. P. Jin and S. Tanemura, Thin Solid Films, 281-282 (1996) 239-242.
13. W. Burkhardt, T. Christmann, B. K. Meyer, W. Niessner, D. Scharmann, Thin Solid
Films, 345 (1999) 229-235.
14. E. Cananna, J. P. Segaud and J. Livage, Materils Research Bulletin, 34(2) (1999)
167-177.
78
15. G. Guaman, F. Beteille, R. Morineau and J. Livage, Eur. J. Solid State Inorg. Chem.,
32 (1995) 851-861.
16. W. Burkhardt, T. Christmann, B. K. Meyer, W. Niessner, D. Schalch, A. Scharmann,
Thin Solid Films, 345 (1999) 229-235.
17. P. Jin, S. Nakao, S. Tanemura,Thin Solid Films, 324 (1998) 151–158.
18. W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W.
Niessner, D.Schalch, A.Scharmann, Thin Solid Films, 402(2002) 226-231.
19. E. V. Babkin, A. A. Charyev, A. P. Dolgarev and H. O. Urinov, Thin Solid Films,
150 (1987) 11-14.
20. V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskiĭ and F.
Silva-Andrade, Tech. Phys. 47 (9) (2002) 1134-1139.
21. C. C. Fulton, G. Lucovsky and R. J. Nemanich, J. Vac. Sci. Technol. B, 20 (4) (2002)
1726-1731.
22. Y. Muraoka , Y. Ueda , Z. Hiroi,Journal of physics and chemistry of solids, 63
(2002) 965-967
23. A. C. Pierre, Ceramic Bulletin, 70 (8) (1991), pp. 1281-1288
24. C. Sella, M. Maaza, O. Nemraoui, J. Lafait, N. Renard and Y. Sampeur, Surface
and Coatings Technology, 98 (1998) 1477-1482
25. M. Tazawa, P. Jin, T. Miki, K. Yoshimura, K. Igrashi and S. Tanemura, Thin Solid
Films, 375 (2000) 100-103
26. W. Haidinger and D. Gross, Thin Solid Films, 12 (1972) 433-438
27. R. T. Rajendra, B. Karunagaran, D. Mangalaraj, Sa. K. Narayandass, P. Manoravi,
M. Joaeph, Vishnu Gopal, Smart Mater. Struct. 12(2003) 188-192.
28. G. Guzman, R. Morineau and J. Livage, Materials Research Bulletin, 29(5) (1994)
509-515
79
29. C. B. Greenberg, Thin Solid Films, 12 (1972)
30. D. P. Partlow, S. R. Gurkovich, K. C. Radford and L. J. Denes, J. Appl. Phys. 70(1)
(1991)
31. T. Maruyama and Y. Ikuta, J. Mater. Sci.28 (1993) 5073-5078
32. K. R. Speck, H. S.-W. Hu, M. E. Sherwin and R. S. Potember, Thin Solid Films,
165 (1988) 317-322
33. T. J. Hanlon, R. E. Walker, J. A. Coath, M. A. Richardson, Thin Solid Films, 405
(2002) 234–237
34. J. Ballato, R. E. Rimen and E. Snitzer, J. Non-Cryst. Solids,vol. 213 & 214, pp.
126-136, 1997.
35. G. Philipp and H. Schmidt, J. Non-Cryst. Solids, vol.63, pp. 283-292, 1984.
36. H. Schmidt, Sol-gel optics : processing and applications, Edited by L. C.Klein,
Kluwer Academic Publishers, pp. 451-482,1994.
37. 化工技術,第 80 期, 1999.11.
38. S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354, 56 (1991).
39. S.Iijima, T. Ichihashi,. Y. Ando, “Pentagons, heptagons and negative curvature in
graphite microtubule growth”, Nature 356, 776 (1992).
40. S. C. Tsang, Y. K Chen, P. J .F Harris, M .L .H Green, “A simple chemicalmethod
of opening and filling carbon nanotubes”, Nature 372, 159 (1994).
41. B. I. Yakobson, “Mechanical relaxation and ''intramolecular plasticity'' in carbon
nanotubes ”, Applied Physics Letters 8, 918 (1998).
42. L. S. K. Pang, J. D. Saxby, S.P. Chatfield, “Thermogravimetric analysis ofcarbon
nanotubes and nanoparticles”, Journal of Physical Chemistry 97, 6941 (1993).
43. R. S. Ruoff, D. C. Lorent, Physical Review 33, 925 (1995).
44. S. Berber, Y. K. Kwon, D. Tomanek, “Unusually high thermal conductivity
80
ofcarbon nanotubes”, Physical Review Letters 84, 4613 (2000).
45. M. A. Osman, D. Srivastava, “Temperature dependence of the thermalconductivity
of single-wall carbon nanotubes”, Nanotechnolory 12, 21 (2001).
46. L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier,
“Purification procedure of carbon nanotubes” Synthetic Metals 103, 2492 (1999).
47. S. C. Tsang, P. J. Harris, and M. L. Green, “Thinning and opening of carbon
nanotubes by oxidation using carbon dioxide”, Nature, 362, 520 , (1993).
48. H. Hu, B. Zhao, M. E. Itkis and R. C. Haddon, “Chromatographic purification
and properties of soluble single-walled carbon nanotubes”, Journal of
theAmericanChemical Society 123, 11673 (2001).
49. A. R. Harutyunyan, B. K Pradhan, J. Chang, G. Chen, and P. C.
Eklund,“Purification of single-wall carbon nanotubes by selective microwave
heating ofcatalyst particles”Journal of Physical Chemistry B 106, 8671 (2002).
50. K. Hernadi, A. Siska, L. Thie-Nga, L. Forro, and Kiricsi, “Reactivity
51. K. Hernadi, A. Siska, L. Thie-Nga, L. Forro, and Kiricsi, “Reactivity
ofdifferentkinds of carbon during oxidative purification of catalytically
preparedcarbon nanotubes”, Solid State Ionics, 141, 203 (2001).
52. F. H. Ko, C. Y. Lee, C. J. Ko, and T. C. Chu, “Purification of multi-walled carbon
nanotubes through microwave heating of nitric acid in a closed vessel”
Carbon43,727 (2005).
53. Y. H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, and B.
Wei,Chem.Phys. Lett., 357,263 (2002).
54. F. Lkazaki, S. Ohshima, K. Uchida, Y. Kuriki, H. Hayakawa, M. Yumura,
K.Takahashi and K. Tojima, Carbon 32, 1539 (1994).
55. G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, S. Roth, Chem.
81
Commum.,“Controlled adsorption of carbon nanotubes on chemically modified
electrode arrays”, 10, 584 (1998).
56. Y. H. Li, S. Wang, Z. Luan, J. Ding, and C. Xu, “Adsorption of cadmium(II) from
aqueous solution by surface oxidized carbon nanotubes”, Carbon, 41, 1057 (2003).
57. 石立節,”奈米碳管純化前後表面特性之變化”,國立中央大學環境工程研究
所碩士論文 (2005).
58. A. R. Harutyuanyan, B. K. Pradhan, J. Chang, G. Chen, and P. C. Eklund,
“Purification of single-wall carbon nanotubes by selective microwave heating of
catalyst particles” Journal of Physical Chemistry B 106, 8671 (2002).
59. K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, and C. B. “Huffman, Purification of
single-wall carbon nanotubes by ultrasonically assisted filtration”, Chemical
Physics Letters 282, 429 (1998).
60. W. B. Choi, D. S. Chung, J. H. Kang. H. Y. Kim, Y. W. Jinj, I. T. Han, Y. H. Lee, J.
E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Applied Physics Letters 75, 3129 (1999)
61. H. J. Vandenburg, A. A. Clifford, K. D. Bartle, R. E. Carlson, J. Carrollc and I. D.
Newtonc, “A simple solvent selection method for accelerated solvent extraction
of additives from polymers”, The Royal Society of Chemistry (1999).
62. 林江珍,林嵩祚,“奈米碳管之有機分散性改質及應用”, 中華民國九十四年石
油季刊, 4, 47.
63. A. Hirsch, “Functionalization of Single-Walled Carbon Nanotubes”, Angewandte
Chemie International Edition 11, 44 (2002).
64. F. Awaja, D. Pavel, “Recycling of PET”, European Polymer Journal 41, 1453
(2005).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top