跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 03:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何嘉偉
研究生(外文):Cha-Wei Ho
論文名稱:銀金屬化製程與鈦基薄膜擴散阻障層之技術開發研究
論文名稱(外文):Development of Silver Metallization Process and Ti-base Diffusion Barrier Layer Technology
指導教授:鍾仁傑鍾仁傑引用關係
口試委員:李敏鴻何志浩鍾朝安
口試日期:2012-07-10
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:76
中文關鍵詞:金屬導線製程技術電鍍銀表面改質接面電阻熱穩定性
外文關鍵詞:Metallization technologySilver electroplatingSurface treatmentContact resistanceThermal stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用銀金屬做為半導體元件之金屬化製程的導線材料,成功開發單層導電材料(氮化鈦)薄膜,同時兼具擴散阻障層以及電鍍晶種層功能,有效放大後續電鍍銀的製程空間,克服目前銅製程在微縮孔洞填充失敗的缺點,提升製程良率。本研究透過對以原子層沉積技術(ALD)製備的氮化鈦薄膜進行表面改質,一方面採用氣體電漿進行氮化鈦薄膜表面的物理轟擊,另一方面透過化學溶液的處理,希望藉此改善氮化鈦表面潤濕性,探討銀電鍍於其上的成膜行為,對成長於氮化鈦薄膜上的銀薄膜進行結晶型態、表面形貌、電阻值以及高溫退火後之材料擴散縱深分析,以評估氮化鈦薄膜應用於銀金屬化製程之可行性。利用氣體電漿前處理的方式,透過水滴實驗量測接觸角的方式觀察表面改質效果,發現此方式可有效增加表面親水特性,我們推測氣體電漿前處理不僅一方面破壞表面原有的鍵結,提供更多銀成核位置與自由電子供後續電鍍過程銀原子的還原析出,在不需要晶種層(Seed Layer)的情況下就可以讓銀金屬直接電鍍在氮化鈦薄膜上。實驗電漿前處理結果顯示,當電漿功率在100W、持續時間為30s時,電鍍銀薄膜有較低的電阻值3.19μΩ-cm,其中氧氣及氬氣加氫氣電漿前處理對於銀薄膜有良好的熱穩定性。另一方面,我們也發現銀的成長機制也由未經電漿前處理的島狀成長的VW機制轉變成島狀加層狀的SK成長機制,這有助於電鍍銀可在極短的時間內形成連續薄膜,對於未來應用在微小孔洞填充的製程,可連續、平坦的附著在孔洞內緣。
由氧氣與氬氣加氫氣電漿前處理所鍍出的銀薄膜於氮氣環境下經過550oC、30分鐘真空退火後,銀薄膜表面無任何聚集球化與破孔產生,透過縱深分析與接面二極體漏電流(junction diode leakage current)檢測結果,顯示氮化鈦薄膜可有效阻擋銀原子於高溫400~600oC的擴散。
最後在銀的填洞實驗,結果顯示以底部成長方式製作金屬結構,可以避免微孔洞產生,不需花費升級現有機台或能力,因此可節省成本,在未來小尺寸金屬結構應用方面有極佳的潛力。


In this study, we investigated the silver metallization technology and feasibility of Ti-based diffusion barrier for Back-end-of-Line (BEOL) interconnect application. To enlarge the electroplating process window, a single ALD-TiN film with bi-functional diffusion barrier and plating seed layer were proposed. Surface modification of TiN film using plasma bombardment is believed to change the surface energy and bonding condition for better Ag wetting during plating. The used plasma sources were selected from argon, hydrogen, oxygen and mixed argon with hydrogen gases. The surface modification of titanium nitride films were examined by water-drop contact angle measurement. We believed that plasma pre-treatment provide more nucleation sites and free electrons for silver reduction during electroplating process. Better thermal stability behaviors of silver film directly plated on TiN film were also observed when pre-treatment using oxygen plasma and mixed argon/hydrogen plasma. No agglomeration and micro voids were seen even annealed at 550oC for 30min.
The electroplating Ag film properties including the crystallinity, surface morphology and electrical properties were characterized. The best result showed the lowest silver film resistance was 3.19μΩ-cm when the condition of plasma pre-treatment was 100W for 30s. Silver/TiN/SiO2/Si stacked structures annealed at elevated temperatures was used to evaluate the barrier capability and no Ag signal was detected in SiO2 layer after 550oC annealing. Depth profile analysis and junction leakage current measurement using n+/p-Si diode showed that the titanium nitride can effectively prevent silver diffusion. Bottom-up Ag electroplating approach avoids the disadvantages, pinch-off, during plating process in damascene approach and can be used in 1X and beyond interconnect technology.

摘要 I
Abstract III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 導線尺寸效應( Size Effect ) 4
2-2 電致遷移( Electromigration ) 7
2-3 擴散阻障層選擇 9
2-3-1 氮化鈦性質與結構 10
2-3-2 原子層沉積 12
2-4 銅導線製程 12
2-5 銀導線特性 14
第三章 實驗方法與步驟 17
3-1 實驗藥品 17
3-2 實驗儀器設備 18
3-2-1 電化學沉積系統 18
3-2-2 原子層化學氣相沉積( Atomic Layer Chemical Vapor Deposition,
ALCVD 19
3-2-3 高密度電漿化學氣相沉積( High Density Plasma Chemical Vapor
Deposition, HDP-CVD ) 20
3-2-4 後段真空退火爐管( Backend vacuum annealing furnace ) 21
3-2-5 金屬四點探針量測儀 ( Metal 4 point probe ) 22
3-2-6 半導體元件分析儀 ( Semiconductor Device Analyzer ) 24
3-3 材料分析設備 25
3-3-1 掃描式電子顯微鏡 ( Scanning Electron Microscope, SEM ) 25
3-3-2 X光繞射儀(X-ray Diffraction, XRD) 26
3-3-3 歐傑電子能譜儀 ( Auger Electron Spectroscopy, AES ) & 化學分析能
譜儀 ( Electron Spectroscopy for Chemical Analysis, ESCA) 27
3-3-4 穿透式電子顯微鏡 ( Transmission Electron Microscope, TEM ) 28
3-3-5 接觸角量測系統 ( Contact Angle ) 29
3-4 實驗流程 30
3-5 實驗步驟 31
3-5-1 基板製備與清洗 31
3-5-2 試片前處理 31
3-5-3 銀鍍液配製與銀導線製備 32
3-5-4 熱退火處理 33
3-5-5 水接觸角量測 33
3-5-6 金屬薄膜四點探針量測 35
3-5-7 掃描式電子顯微鏡觀察 35
3-3-8 X光繞射儀分析 35
3-5-9 歐傑電子能譜儀檢測 36
3-5-10 接面漏電流量測 36
第四章 結果與討論 38
4-1 氮化鈦表面潤濕性測試 38
4-2 氣體電漿前處理能量評估 41
4-3 銀薄膜表面結構分析 43
4-4 氮化鈦表面處理對銀薄膜熱穩定性評估 46
4-5 氮化鈦表面處理對銀薄膜電阻值分析 51
4-6 銀薄膜晶相及微結構分析 53
4-7 氮化鈦對銀擴散阻障評估 56
4-8 氮化鈦與銀接面漏電流測試 60
4-9 銀填洞測試 63
第五章 結論 67
未來展望 69
已發表論文 70
參考資料 71


[1]M.T. Bohr. Interconnect Scaling - The Real Limiter to High Performance ULSI. Proceedings of the IEEE International Electron Devices Meeting, 1995:241-244.
[2]P.C. Andricacos. Copper on-chip interconnections a breakthrough in electrodeposition to make better chips. The Electrochemical Society Interface. 1999;8(5):32-37.
[3]J. Li, H.S. Lu, Y.W. Wang, X.P. Qu. Sputtered Ru–Ti, Ru–N and Ru–Ti–N films as Cu diffusion barrier. Microelectronic Engineering. 2011;88(5):635–640.
[4]R. Chen, T.N. Arunagang, O. Chyan, R.M. Wallace, M.J. Kim, T.Q. Hurd. Diffusion Studies of Copper on Ruthenium Thin Film. Journal of The Electrochemical Society. 2004;7(8):G154-G157.
[5]C.W. Chen, J.S. Chen, and J.S. Jeng. Improvement on the Diffusion Barrier Performance of Reactively Sputtered Ru–N Film by Incorporation of Ta. Journal of The Electrochemical Society. 2008;155(6):H438-H442.
[6]S.H. Kwon, O.K. Kwon, J.S. Min, and S.W. Kang. Plasma-Enhanced Atomic Layer Deposition of Ru–TiN Thin Films for Copper Diffusion Barrier Metals. Journal of The Electrochemical Society. 2006;153(6):G578-G581.
[7]T. Watanabe, H. Nash, T. Usui, G. Minamihaba, A. Gawase, M. Shimada, Y. Yoshimizu, Y. Uozumi, and H. Shibata. Self-Formed Barrier Technology using CuMn Alloy Seed for Copper Dual-Damascene Interconnect with porous-SiOC/ porous-PAr Hybrid Dielectric. International Interconnect Technology Conference. 2007:7-9.
[8]W.M. Li, M. Tuominen, S. Haukka, H. Sprey, and J. Raaijmakers. Diffusion barrier material for Cu metallization using ALD-WNxCy. Proceedings of the IEEE Interconnect Technology Conference. 2004:188.
[9]J. Koike, M. Haneda, J. Iijima, and M. Wada. Cu Alloy Metallization for Self-Forming Barrier Process. Proceedings of the IEEE Interconnect Technology Conference. 2006:161.
[10]F. Kreupl, A.P. Graham, M. Liebau, G.S. Duesberg, R. Seidel, and E. Unger. Carbon Nanotubes for Interconnect Applications. Proceedings of the IEEE International Electron Devices Meeting. 2004:683-686.
[11]M. Haurylau, G. Chen, H. Chen, J. Zhang, N.A. Nelson, D.H. Albonesi, and P.M. Fauchet. On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions. Journal of Selected Topics in Quantum Electronics. 2006;12(6):1699-1705.
[12]T.L. Alford, E. Misra, S.K. Bhagat, and J.W. Mayer. Influence of Joule heating during electromigration evaluation of silver lines. Thin Solid Films. 2009;517(5):1833-1836.
[13]E. Misra, C. Marenco, N.D. Theodore, and T.L. Alford. Failure mechanisms of silver and aluminum on titanium nitride under high current stress. Thin Solid Films. 2005;474(1):235-244.
[14]M. Hauder, W. Hansch, J. Gstottner, and D.S. Landsiedel. Ag metallization with high electromigration resistance for ULSI. Solid-State Electronics. 2003;47(7):1227–1231.
[15]J. Vancea, G. Reiss, and H. Hoffmann. Mean-free-path concept in polycrystalline metals. Physical Review B. 1987;35(12):6435-6437.
[16]H. Kitada, T. Suzuki, T. Kimura, and T. Nakamura. Height Dependent Resistivity of Copper Interconnects in the Size Effect. Materials Research Society Symposium Proceedings. 2007;990:B09-08.
[17]G.B. Alers, J. Sukamto, S. Park, G. Harm, and J. Reid. Containing the Finite Size Effect in Copper Lines. Semiconductor International. 2006; 29(5):38.
[18]Y.J. Hou, C.M. Tan. Size effect in Cu nano-interconnects and its implication on electromigration. 2nd IEEE International Nanoelectronics Conference. 2008:610-618.
[19]Electromigration. http://www.tf.uni-kiel.de/matwis/amat/elmat_en/kap_6/advanced/t6_4_2.html
[20]D. Adams, T.L. Alford. Encapsulated silver for integrated circuit metallization. Materials Science and Engineering. 2003;40(6):207-250.
[21]銅導線中竹節狀晶粒
http://www.oxford-instruments.com
[22]S.W. Russella, S.A. Rafalskia, R.L. Spreitzera, J. Lia, M. Moinpourc, F. Moghadamc, and T.L. Alford. Enhanced adhesion of copper to dielectrics via titanium and chromium additions and sacrificial reactions. Thin Solid Films. 1995;262(1):154-167.
[23]X.W. Lin, D. Pramanik. Future Interconnection Technologies and Copper Metallization. Solid State Technology. 1998;41(10):63-79.
[24]C. Ryu, K.W. Kwon, A.L. Loke, H. Lee, T. Nogami, V.M. Dubin, R.A. Kavari, G.W. Ray, and S.S. Wong. Microstructure and Reliability of Copper Interconnects. IEEE Transactions on Electron Devices. 1999;46(6):1113-1119.
[25]G. Raghavan, C. Chiang, P.B. Anders, S.M. Tzeng, R. Villasol, G. Bai, M. Bohr, and D.B. Fraser. Diffusion of copper through dielectric films under bias temperature stress. Thin Solid Films. 1995;262(1):168-176.
[26]L.C. Lane, T.C. Nason, G.R. Yang, T.M. Lu, and H. Bakhru. Secondary Ion Mass Spectrometry Study of the Thermal Stability of Cu/ Refractory Metal/ Si Structures. Journal of Applied Physics. 1991;69(9):6719.
[27]T. Nogami, J. Romero, V. Dubin, D. Brown, and E. Adem. Characterization of the Cu/Barrier Metal Interface for Copper. Proceedings of the IEEE Interconnect Technology Conference. 1998:298-300.
[28]C.A. Chang. Thermal Stability of the Cu/ Ta / PtSi Structures. Journal of Applied Physics. 1990;67(12):7348-7350.
[29]J.O. Olowolafe, C.J. Mogab, R.B. Gregory, and M. Kottke. Interdiffusions in Cu/ Reactive-ion-sputtered TiN, Cu/ Chemical-vapor-deposited TiN, Cu/TaN, and TaN/Cu/TaN Thin-film structures: Low Temperature Diffusion Analyses. Journal of Applied Physics. 1992;72(9):4099-4103.
[30]S. Q. Wang, I. Raaijmakers, B. J. Burrow, S. Redker, and K. B. Kim. Reactively Sputtered TiN as A Diffusion Barrier between Cu and Si. Journal of Applied Physics. 1990;68(10):5176-5187.
[31]H. Wakabayashi, Y. Saito, K. Takeuchi, T. Mogami, and T. Kunio. A Novel W/TiNx Metal Gate CMOS Technology using Nitrogen-Concentration-Controlled TiNx Film. Proceedings of the IEEE International Electron Devices Meeting. 1999:253-256.
[32]S.B. Herner, H.M. Zhang, B. Sun, Y. Tanaka, W. Shi, S.X. Yang, R. Lum, K.A. Littau, and A. Saleh. Fluorine Barrier Properties of Bias-Sputtered Tungsten Films. Journal of The Electrochemical Society. 2000;147(5):1936-1939.
[33]S.Q. Wang, S. Suthar, C. Hoeflich, and B.J. Burrow. Diffusion Barrier Properties of TiW between Si and Cu. Journal of Applied Physics. 1993;73(5):2301-2302.
[34]J.C. Chiou, K.C. Juang, and M.C. Chen. TiW(N) as Diffusion Barriers Between Cu and Si. Journal of The Electrochemical Society. 1995;142(7):2326-2331
[35]K.K. Lai, A.W. Mark, T.P. Wendling, P. Jian, and B. Hathcock. Characterization of a PECVD WxN process using N2, H2, and WF6. Thin Solid Film. 1998;332(1):329-334.
[36]D.S. Yoon, H.K. Baik. Effect of interposed Cr layer on the thermal stability of Cu/Ta/Si structure. Journal of Applied Physics. 1996;80(11):6550-6552.
[37]J.S. Kwak, H.K. Lee, J.H. Kim, and S.M. Lee. Improvement of Ta diffusion barrier performance in Cu metallization by insertion of a thin Zr layer into Ta film. Applied Physics Letters. 1998;72(22):2832-2834.
[38]K. Holloway, P. Fryer. Tantalum as a diffusion barrier between copper and silicon. Applied Physics Letters. 1990;57:1736-1738.
[39]K. Holloway, P. M. Fryer, C. Cabral, Jr., J. M. E. Harper, P. J. Bailey, and K. H. Kelleher. Tantalum as A Diffusion Barrier Between Copper and Silicon: Failure Mechanism and Effect of Nitrogen Additions. Applied Physics Letters. 1992;71(11):1726-1738.
[40]M.H. Tsai, S.C. Sun. Metal organic chemical vapor deposition of tantalum nitride by tertbutylimidotris(diethylamido) tantalum for advanced metallization. Applied Physics Letters. 1995;67(8):1128-1130.
[41]T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi, and M. Murakami. Diffusion Barrier Property of TaN between Si and Cu. Applied Surface Science. 1996;99(4):265-272.
[42]M. Stavrev, D. Fischer, C. Wenzel, K. Drescher, and N. Mattern. Crystallographic and morphological characterization of reactively sputtered Ta, Ta-N, and Ta-N-O thin films. Thin Solid Films. 1997;307(1):79-88.
[43]J.C. Lin, C. Lee. Growth of Tantalum Nitride Films on Si by Radio Frequency Reactive Sputtering of Ta in N2/Ar Gas Mixture: Effect of Bias. Journal of The Electrochemical Society. 2000;147(2):713-718.
[44]H.C. Koo, E.J. Ahn, and J.J. Kim. Direct-Electroplating of Ag on Pretreated TiN Surfaces. Journal of The Electrochemical Society. 2008;155(1):D10-D13.
[45]H.O. Pierson. Handbook of Refractory Nitrides and Carbides. Noyes Publ, New York. 1996.
[46]S.T. Oyama. The Chemistry of Transition Metal Carbide and Nitrides. Blackie Academic and Professional, New York. 1996.
[47]L.E. Toth. Transition Metal Carbides and Nitrides. Academic, New York. 1971.
[48]T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker. Binary Alloy Phase Diagrams. AsM Int’l, Materials Park, Ohio. 1990;3:2705-2707.
[49]M. Ritala, M. Leskela, Atomic Layer Deposition in Handbook of Thin Film Materials. Academic Pree, San Diego. 2002;1:103-159.
[50]M. Leskela, M. Ritala. Atomic Layer Deposition(ALD): From Precursors to Thin Film Structure. Thin Solid Films. 2002;409(1):138-146.
[51]A. Pratt. Overview of the Use of Copper Interconnects in the Semiconductor Industry. Advanced Energy. 2004:1-20.
[52]D. Adams, T.L. Alford, and J.W. Mayer. Silver Metallization. 2008.
[53]S.W. Jones. Diffusion in Silicon. IC Knowledge LLC. 2000.
[54]M. Hauder, J. Gstöttner, W. Hansch, and D.S. Landsiedel. Scaling properties and electromigration resistance of sputtered Ag metallization lines. Applied Physics Letters. 2001;78(6):838-840.
[55]K.S. Chio, J.M. Lim, S.D. Roy, and C.M. Lee. Ehancement of Ru Nucleation in Ru-Metal Organic Chemical Vapor Deposition by Electron Cyclotron Resonance Plasma Pretreatment. Japanes Journal of Applied Physics. 2003;42(9A):5539-5542.
[56]H. Luth. Solid Surfaces Interfaces and thin films. Solid Surface 5th ed. 2010.
[57]C.L. Chang, C.L. Lin, and M.C. Chen. Effect of TiN Substrate Plasma Treatment on Copper Chemical Vapor Deposition. Japanes Journal of Applied Physics. 2004;43(5A):2442-2446.
[58]L.G. Chen, Y.X. Zeng, P. Nyugen, and T.L. Alford. Silver diffusion and defect formation in Si (111) substrate at elevated temperatures. Materials Chemistry and Physics. 2002;76(3):224-227.
[59]D. Liao, Y. Lin, H. Yang, H. Witham, J. May, J. Lee, and S. Tso. Titanium Nitride Thin Films by the Electron Shower Process. in Proceedings of the 11th International VLSI Multilevel Interconnection Conference. 1994:428.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊